
Abstract

Based on more than 2 years of daily use of the Ubuntu Linux system and 6 
months of on-line and in-person fieldwork among the developers working to 
develop and maintain it, this thesis examines the individual and collaborative 
day-to-day practices of these developers as they relate to the computer 
operating system that is the result of their labour. Despite being spread across 
the industrialized world, these Ubuntu hackers socialise, share their 
knowledge, and come to depend on each other in their work across the 
Internet, as well as in their in-person meetings at conferences and summits. I 
argue that these shared and negotiated on-line and in-person practices 
constitute a community of practice (Wenger 1998) rooted in a more than 40-
year old “oral” computing tradition based on the Unix operating system which 
has spawned a lively interdependent on-line eco-system of free software 
projects built on the reciprocal sharing of knowledge and source code which, 
guaranteed by cleverly crafted copyright licenses, has resulted in a 
cumulatively improved system developed openly on-line in a fashion which 
has made it a viable alternative to the mainstream IT industry.
Taking the Ubuntu system as my point of departure, I examine the network of 
practices, processes and actors in which it has been constructed. Through a 
strategically selected constellation of theories, I seek to describe and analyze 
the three central dimensions of a community of practice: Joint enterprise, 
mutual engagement and shared repertoire.
Joint enterprise is the Ubuntu hackers’ negotiation of their different personal 
motivations for contributing to this cause in relation to the community’s 
overall, institutionally stated goal of spreading the use and awareness of free 
software. Following Alfred Gell’s work on social relations mediated through 
technical work (Gell 1999), I argue that these diverse interests are reflected in 
every little part of the system and results in conflicts and social negotiations 
centred around the fascination of learning the details of technology, enjoying 
working together on a technical challenge, and sharing an ethical commitment 
to write software that can be shared and understood for others to use and 
learn.
Mutual engagement is the complementary social practices through which the 

1



Ubuntu hackers work to develop and maintain the system. I argue that these 
practices contain a duality between what Claude Lévi-Strauss has called 
engineer work and bricolage (Lévi-Strauss 1994): Between visualising and 
designing new features as well as redesigning and reimplementing odd bits of 
left-behind work to fit their needs through a haphazard extending, fixing, 
fussing and testing. I argue that this mutual engagement enables them to learn 
from one another by collaborating, discussing, sharing their work, and helping 
each other both on-line and in-person.
Shared repertoire consists of the experiences, stories, tools, and slang 
through which the Ubuntu hackers come to share through their daily use and 
customization of the Ubuntu system – the shared built environment which 
they adopt as their own. I argue that this taking up residence within the 
Ubuntu system is similar to Tim Ingold’s notion of dwelling (Ingold 2000), 
and that the system affords the hackers’ work to such an extent that it 
becomes an extension of the hacker’s mind, as suggested by Clark & 
Chalmers (1998) – the all-encompassing means for achieving their 
individually diverse goals.
Furthermore, I claim that this community of practice is built not only through 
the hackers’ shared history of learning to dwell and build within Ubuntu 
system, making it their own, but also through coming to trust and collaborate 
with the hundreds of developers and millions of users dwelling there in 
dependence on its continued, guaranteed development and integrity. I argue 
that this continuous building of the system, in what Matt Elliott calls a 
stigmergic fashion (Elliott 2006), which empowers the hackers to change the 
system freely, communicating directly through the changes they make to their 
shared environment. This stigmergic collaboration rests on the cultivation of a 
mutual accountability that is built in part on a reciprocal trust based on the 
hackers’ personal on-line reputations verified through technical and 
cryptographic means central to membership of the community of practice. As 
well as in the reciprocal governance of the respected and well-reputed hackers 
leading the project in a manner similar to the rule of Melanesian big-men as 
described by Marshall Sahlins.
Finally, I suggest that it is the possibility to adopt, learn, configure, and even 
build the system according to their own needs, which opens the meritocratic 
community of practice for new contributors to scale the steep curve of 

2



learning necessary to enter and learn among them. In this way, the Ubuntu 
hackers come to share more than just the same system, they come to share a 
common history, and, to a certain extent, a shared identity through their 
practice.

3



Introduction

Loading Ubuntu...

22:15:51  kernel: [17179588.740000] ts: Compaq touchscreen protocol output
22:15:51  kernel: [17179588.784000] NET: Registered protocol family 23
22:15:51  kernel: [17179588.816000] found SMC SuperIO Chip (devid=0x5a rev=00 base=0x002e): LPC47N227
22:15:51  kernel: [17179588.816000] smsc_superio_flat(): fir: 0x230, sir: 0x2f8, dma: 03, irq: 3, mode: 0x0e
22:15:51  kernel: [17179588.816000] smsc_ircc_present: can't get sir_base of 0x2f8
22:15:51  kernel: [17179588.940000] parport: PnPBIOS parport detected.
22:15:51  kernel: [17179588.940000] parport0: PC-style at 0x378, irq 7 [PCSPP,TRISTATE,EPP]
22:15:51  kernel: [17179589.032000] Linux agpgart interface v0.101 (c) Dave Jones
22:15:51  kernel: [17179589.048000] agpgart: Detected an Intel 855 Chipset.
22:15:51  kernel: [17179588.188000] pci_hotplug: PCI Hot Plug PCI Core version: 0.5
22:15:51  kernel: [17179588.192000] shpchp: Standard Hot Plug PCI Controller Driver version: 0.4
22:15:51  kernel: [17179588.364000] input: PS/2 Mouse as /class/input/input1
22:15:51  kernel: [17179588.392000] input: AlpsPS/2 ALPS GlidePoint as /class/input/input2
22:15:51  kernel: [17179588.572000] input: PC Speaker as /class/input/input3
22:15:51  kernel: [17179588.648000] wbsd: Winbond W83L51xD SD/MMC card interface driver, 1.5
22:15:51  kernel: [17179588.648000] wbsd: Copyright(c) Pierre Ossman
22:15:51  kernel: [17179588.648000] wbsd: probe of 00:0a failed with error -16
22:15:51  kernel: [17179588.704000] hw_random: RNG not detected
22:15:51  kernel: [17179588.740000] ts: Compaq touchscreen protocol output
22:15:51  kernel: [17179588.784000] NET: Registered protocol family 23
22:15:51  kernel: [17179588.816000] found SMC SuperIO Chip (devid=0x5a rev=00 base=0x002e): LPC47N227
22:15:51  kernel: [17179588.816000] smsc_superio_flat(): fir: 0x230, sir: 0x2f8, dma: 03, irq: 3, mode: 0x0e
22:15:51  kernel: [17179588.816000] smsc_ircc_present: can't get sir_base of 0x2f8
22:15:51  kernel: [17179588.940000] parport: PnPBIOS parport detected.
22:15:51  kernel: [17179588.940000] parport0: PC-style at 0x378, irq 7 [PCSPP,TRISTATE,EPP]
22:15:51  kernel: [17179589.032000] Linux agpgart interface v0.101 (c) Dave Jones
22:15:51  kernel: [17179589.048000] agpgart: Detected an Intel 855 Chipset.
22:15:51  kernel: [17179589.048000] agpgart: Detected 16252K stolen memory.
22:15:51  kernel: [17179589.056000] agpgart: AGP aperture is 128M @ 0xb0000000
22:15:51  kernel: [17179589.492000] 8139too Fast Ethernet driver 0.9.27
22:15:51  kernel: [17179589.492000] ACPI: PCI Interrupt Link [LNKF] enabled at IRQ 10
22:15:51  kernel: [17179589.492000] ACPI: PCI Interrupt 0000:01:01.0[A] -> Link [LNKF] -> GSI 10 (level, low) 
-> 
22:15:51  kernel: [17179589.492000] eth0: RealTek RTL8139 at 0xdfb24000, 00:02:3f:1a:5a:a3, IRQ 10
22:15:51  kernel: [17179589.516000] 8139cp: 10/100 PCI Ethernet driver v1.2 (Mar 22, 2004)
22:15:51  kernel: [17179589.556000] ACPI: PCI Interrupt 0000:00:1f.5[B] -> Link [LNKB] -> GSI 10 (level, low) 
-> 
22:15:51  kernel: [17179589.908000] ieee80211: 802.11 data/management/control stack, git-1.1.13
22:15:51  kernel: [17179589.908000] ieee80211: Copyright (C) 2004-2005 Intel Corporation
22:15:51  kernel: [17179589.948000] usbcore: registered new driver hiddev
22:15:51  kernel: [17179589.964000] input: Logitech Optical USB Mouse as /class/input/input4
22:15:51  kernel: [17179589.964000] input: USB HID v1.10 Mouse [Logitech Optical USB Mouse] on usb-0000:00:
22:15:51  kernel: [17179589.964000] usbcore: registered new driver usbhid
22:15:51  kernel: [17179589.964000] drivers/usb/input/hid-core.c: v2.6:USB HID core driver
22:15:51  kernel: [17179589.996000] eth0: link up, 100Mbps, full-duplex, lpa 0x45E1
22:15:51  kernel: [17179590.004000] ipw2200: Intel(R) PRO/Wireless 2200/2915 Network Driver, 1.1.2kmprq

4



22:15:51  kernel: [17179590.004000] ipw2200: Copyright(c) 2003-2006 Intel Corporation
22:15:51  kernel: [17179590.004000] Driver 'ipw2200' needs updating - please use bus_type methods
22:15:51  kernel: [17179590.380000] intel8x0_measure_ac97_clock: measured 55453 usecs
22:15:51  kernel: [17179590.380000] intel8x0: clocking to 48000
22:15:51  kernel: [17179590.380000] ACPI: PCI Interrupt 0000:01:04.0[A] -> Link [LNKA] -> GSI 10 (level, low) 
-> 
22:15:51  kernel: [17179590.380000] Yenta: CardBus bridge found at 0000:01:04.0 [14c0:0012]
22:15:51  kernel: [17179590.380000] Yenta: Using CSCINT to route CSC interrupts to PCI
22:15:51  kernel: [17179590.380000] Yenta: Routing CardBus interrupts to PCI
22:15:51  kernel: [17179590.380000] Yenta TI: socket 0000:01:04.0, mfunc 0x00111c12, devctl 0x46
22:15:51  kernel: [17179590.612000] Yenta: ISA IRQ mask 0x0860, PCI irq 10
22:15:51  kernel: [17179590.612000] Socket status: 30000006
22:15:51  kernel: [17179590.612000] Yenta: Raising subordinate bus# of parent bus (#01) from #01 to #05
22:15:51  kernel: [17179590.612000] pcmcia: parent PCI bridge I/O window: 0xc000 - 0xdfff
22:15:51  kernel: [17179590.612000] cs: IO port probe 0xc000-0xdfff: clean.
22:15:51  kernel: [17179590.612000] pcmcia: parent PCI bridge Memory window: 0xe0000000 - 0xefffffff
22:15:51  kernel: [17179590.612000] pcmcia: parent PCI bridge Memory window: 0xa0000000 - 0xafffffff
22:15:51  kernel: [17179590.620000] ACPI: PCI Interrupt Link [LNKG] enabled at IRQ 10
22:15:51  kernel: [17179590.620000] ACPI: PCI Interrupt 0000:01:02.0[A] -> Link [LNKG] -> GSI 10 (level, low) 
-> 
22:15:51  kernel: [17179590.620000] ipw2200: Detected Intel PRO/Wireless 2200BG Network Connection
22:15:51  kernel: [17179590.824000] ipw2200: Detected geography ZZR (14 802.11bg channels, 0 802.11a 
channels)
22:15:51  kernel: [17179590.948000] cs: IO port probe 0x100-0x3af: excluding 0x230-0x237
22:15:51  kernel: [17179590.948000] cs: IO port probe 0x3e0-0x4ff: excluding 0x4d0-0x4d7
22:15:51  kernel: [17179590.948000] cs: IO port probe 0x820-0x8ff: clean.
22:15:51  kernel: [17179590.952000] cs: IO port probe 0xc00-0xcf7: clean.
22:15:51  kernel: [17179590.952000] cs: IO port probe 0xa00-0xaff: clean.
22:15:51  kernel: [17179591.064000] lp0: using parport0 (interrupt-driven).
22:15:51  kernel: [17179591.076000] NET: Registered protocol family 17
22:15:51  kernel: [17179591.120000] SCSI subsystem initialized
22:15:51  kernel: [17179591.124000] ieee1394: sbp2: Driver forced to serialize I/O (serialize_io=1)
22:15:51  kernel: [17179591.124000] ieee1394: sbp2: Try serialize_io=0 for better performance
22:15:51  kernel: [17179591.144000] Adding 1461872k swap on /dev/disk/by-uuid/48fa4fcc-4186-4baf-90b0-
a8e294b21408.  Priority:-1 extents:1 across:1461872k 22:15:51  kernel: [17179591.236000] EXT3 FS on hda1,
22:15:51  kernel: [17179591.596000] kjournald starting.  Commit interval 5 seconds
22:15:51  kernel: [17179591.604000] EXT3 FS on hda3, internal journal
22:15:51  kernel: [17179591.604000] EXT3-fs: mounted filesystem with ordered data mode.
22:15:51  kernel: [17179591.604000] kjournald starting.  Commit interval 5 seconds
22:15:51  kernel: [17179591.612000] EXT3 FS on hda4, internal journal
22:15:51  kernel: [17179591.612000] EXT3-fs: mounted filesystem with ordered data mode.
22:15:51  kernel: [17179592.168000] NET: Registered protocol family 10
22:15:51  kernel: [17179592.168000] lo: Disabled Privacy Extensions
22:15:51  kernel: [17179592.168000] IPv6 over IPv4 tunneling driver
22:15:51  kernel: [17179592.176000] eth1: NETDEV_TX_BUSY returned; driver should report queue full via 
ieee_device->is_queue_full.
22:15:51  kernel: [17179597.520000] ACPI: AC Adapter [ACAD] (on-line)
22:15:51  kernel: [17179597.596000] ACPI: Battery Slot [BAT1] (battery present)
22:15:51  kernel: [17179597.612000] ACPI: Power Button (FF) [PWRF]
22:15:51  kernel: [17179597.612000] ACPI: Lid Switch [LID]
22:15:51  kernel: [17179597.612000] ACPI: Power Button (CM) [PWRB]
22:15:51  kernel: [17179597.612000] ACPI: Sleep Button (CM) [SLPB]
22:15:51  kernel: [17179597.788000] pcc_acpi: loading...

5



22:15:51  kernel: [17179597.912000] ACPI: Video Device [GFX0] (multi-head: yes  rom: yes  post: no)
22:15:52  kernel: [17179599.816000] [drm] Initialized drm 1.0.1 20051102

Something like this ran across my screen the first time I started Ubuntu Linux 
on my computer in November 2004.

It all started a month previously as I was browsing on the Internet looking for 
a new laptop computer. I noticed that some shops offered to sell me a 
computer with no operating system. An operating system is the collection of 
programs which not only manages the computer's resources but also provides 
a programming interface making it possible for other applications to make use 
of the system. Microsoft Windows is one such operating system, the cost of 
which is included in the price of most computers. But I had heard that there 
were other, cheaper, operating systems available, so I decided that this was a 
good opportunity to save some money, and ordered the computer sans system.
I had heard about the whole Linux phenomenon, of computer geeks sitting in 
basements around the world, collaborating over the Internet, building a 
computer operating system in their spare time, which could be downloaded, 
installed, used and modified completely for free, and though I had a few 
friends who used it, their computer skills eclipsed mine so thoroughly that I 
had never considered it something for me to use. Yet, buying a new computer, 
I felt ready for an experiment. So I decided to install Linux.
But looking on-line, I found a haphazard jungle of different interpretations 
and ideas of what Linux was. There were literally hundreds of different 
versions of Linux for download. Being unable to assess these different 
versions on their technical merits, I eventually decided to go with a version 
called Ubuntu whose developers proclaimed it to be "Linux for Human 
Beings." They related its open development to Desmond Tutu's South African 
ideology of Ubuntu, a Zulu word meaning "humanity to others", while 
promising easy installation and use – even for less technically minded people 
like me.
When my new computer arrived, I installed the version of Ubuntu I had 
downloaded from the Internet, happy to find it working, but unnerved at the 
newness of it all: the file system was full of opaque folder names, changing a 
setting required typing esoteric commands, and whenever I started up or shut 
down the computer, it spouted hundreds of lines of technical messages like 

6



those featured above. 
If computers have souls, then the operating system is the eye through which 
the soul of the machine is reflected. And what and how much it reflects, is 
wholly up to the designers of the operating system. As I got used to the 
system, I became more and more intrigued with the transparency of it: All the 
technical details were laid bare before me, revealing the immense complexity 
of the operating system as it offered itself for interpretation. The complexity 
hinted at the enormous effort and depth of technical knowledge that had gone 
into its making and which I had simply taken for granted until now.
I soon learned that the transparency within the Ubuntu stemmed from its 
being open source software. Open source refers to the source code – which is 
what the programmer writes. Source code is simply text which, when 
conformed to a strict set of guidelines of commands and declarations defined 
in a programming language, can be used to instruct the computer. But in order 
for the computer to execute the code, the source code usually has to be 
translated into binary object code consisting of 1s and 0s using another 
program called a compiler. Thus, programming is not a direct interaction with 
the computer, but rather the writing of code that, when compiled – or built –  
can be run by the computer. The compiled version of the program is no longer 
readable by the programmer, it has become an opaque software tool which, if 
properly programmed, can be run, accept an input and produce an output, 
providing services and presenting its work through messages like those above, 
but the exact manner in which it works can only be discovered by examining 
the original source code. The object code can be run, copied onto a disk and 
sold, but it can no longer be edited in any way. This is the distinction between 
closed-source software such as Microsoft Windows, where Microsoft sells 
you a copy of the object code, but keeps the source code secret, only to be 
seen and altered by the programmers employed by Microsoft; and open 
source software such as Ubuntu where the source code is freely available, 
thus inspiring the term free software with which the Ubuntu hackers prefer to 
denominate their work.
A group of Spanish computer scientists measured the size of a Linux system 
similar to Ubuntu, and found that it contained around 230 million lines of 
source code. When they translated this into the effort spent on writing this 
code using a standard software industry cost estimate model, they found that 

7



it would correspond to almost 60.000 man-years of work (Amor-Iglesias et. 
al. 2005). By comparison, it took an estimated 3.500 man-years to build the 
Empire State Building in New York, and 10.000 man-years to build the 
Panama Canal. This immense effort makes modern operating systems such as 
Ubuntu among the biggest and most complex engineering projects ever 
conceived and built.
But though I had all of the blueprints, all the technical details available to me 
in the form of these millions of lines of open source code, I did not have the 
esoteric engineering knowledge necessary to appreciate nor modify it. So 
instead, I turned my interest to the people who did, curious to learn more 
about how they collaborate to build such an intricate system, and to learn why 
they were doing all of this work just to give it away. 

The focus of the thesis
In April 2006 I initiated anthropological fieldwork following the development 
cycle of a new version of Ubuntu, contributing and learning among the 
Ubuntu developers. These developers are computer enthusiasts who often 
refer to themselves as hackers, though not in the sense used by the press to 
describe malicious meddlers who break into computer systems. Rather, a 
hacker, in the original computer jargon, is "A person who enjoys exploring the 
details of programmable systems and how to stretch their capabilities, as 
opposed to most users, who prefer to learn only the minimum necessary"1, 
thus, the term has become a shibboleth,2 identifying those who use the 
broader sense (rather than the narrow intrusion-oriented sense) as members of 
the hacker community (Levy 1994, Turkle 1984: 207-225).
My initial impression of the Ubuntu project was that it was a club for bright 
boys with a penchant for computers, an impression which was supported by 
an on-line web survey I had developed in order to gather quantitative data on 

1 Many of these jargon terms, including this quote, are taken from the Jargon File – an on-
line dictionary of hacker terms and jargon that has been compiled by various hackers 
since the early 1980's. It is currently under the editorship of hacker Eric S. Raymond. The 
Jargon File has been published by MIT Press under the name “The New Hacker's 
Dictionary” (1996).

2  A shibboleth is commonly a unique pronunciation, word, behavior, or practice used to 
distinguish one group of people from another, and to identify individuals as either 
members of the group or outsiders. For example a saying that is strongly used by 
members of a group and regarded as meaningless, unimportant or misguided by outsiders.

8



the basic statistics of the Ubuntu community and to which I had received 
around 300 responses. The results showed that the Ubuntu community 
consists predominately of young (average age was 29 years) well-educated 
(more than 50% had a university degree, half of which majored in computer-
related disciplines) men (97,5% male respondents3), living in the 
industrialized world (50% in Europe, 33% in North America, 10% in 
Australia and New Zealand with the remaining 7% spread over the rest of the 
world), and who spend much time working on the computer (75% of 
respondents spent more than 40 hours on the computer in an average week), 
both as a profession (50% of the respondents working in the IT industry, and 
another 25% of the respondents being students in related fields) but also as a 
hobby.4 
Thus my field site was the Ubuntu community – those users of the Ubuntu 
system scattered all over the world who actively participate and contribute in 
the shaping and developing of the system both technically and socially. I 
define the “Ubuntu system” as the body of software that is actively 
developed, maintained and distributed by the Ubuntu community – both in the 
form of a Installation CD and in the installed system itself through which 
hackers interact with the computer. In April 2007, Mark Shuttleworth, the 
leader of the Ubuntu project, estimated that around 10 million computers 
were running the Ubuntu system.5

3 The lack of female open source contributors, or perhaps rather, the overwhelming male 
dominance, is often a topic of discussion, even attracting a report on the matter from 
“Free/Libre/Open Source Software: Policy Support” (FLOSSPOLS) project (Krieger, 
Nafus, Leach 2006). The report concludes that rather than the result of a lack of technical 
interest among women, the lack of women in free software is related to a similar lack of 
women in the IT industry and related fields of education, rooted in a social environment 
that is, often unconsciously, unwelcoming to women  (Ibid. 17). Though male hackers 
often deny such social factors, it is difficult to deny that gatherings such as free software 
conferences are fundamentally gendered spaces – much like boy's summer camps – where 
the few women present are not expected to be technically capable or inclined to 
participate. Unfortunately, a further examination of these issues is beyond the scope of 
this thesis – in part due to the fact that all of the informants I interviewed were male.

4 The results of my survey generally corresponded with the trends of the recent EU-funded 
“Free/Libre/Open Source Software: Policy Support” (FLOSSPOLS) survey of more than 
5000 free software hackers (Ghosh 2005b, 2006).

5  Cf. https://wiki.ubuntu.com/MeetingLogs/openweekfeisty/askmark. Though there are 
millions of users of the Ubuntu system, it is important to note that only a fraction of these 
contribute actively to the development of the system. As stated, my focus is solely on this 
group of active, contributing users.

9

https://wiki.ubuntu.com/MeetingLogs/openweekfeisty/askmark


I joined the Ubuntu on-line community on the same terms as the Ubuntu 
hackers, contributing to and using the same system, sharing their experiences 
with the system, and meeting them in-person on the same terms as they do at 
the conferences at which they gather, experiencing the same social and 
technical means and limitations through which they develop the system.

As my fieldwork progressed, I noticed that by far most of the day-to-day 
practice of the Ubuntu community was tied to the constant maintenance and 
improvement of the Ubuntu system, while the political or ethical discussions 
related to the reciprocal sharing of source code, which had been the focus of 
most of the earlier anthropological work so far (which I discuss below), 
seemed to be considered a well-defined implicit premise of the community.
Intrigued by this new form of social collaborative organization and practice 
which allowed users and developers to collaborate to build and maintain such 
an immensely complicated engineering work, and seeking to fill this gap in 
the literature, I decided to focus on how the Ubuntu hackers relate to the  
Ubuntu system in their individual and collaborative day-to-day practices.
I sought to examine the social and cultural relations in which the Ubuntu 

10

Illustration 1: An Ubuntu installation CD containing the core Ubuntu system which  
provides access to the thousands of software packages of the Ubuntu system.



system is developed so as to gain a better understanding of how this feat of 
engineering had come about and continued to improve.

Argument of the thesis
In examining the Ubuntu hackers' day-to-day practices, I argue that the 
Ubuntu hackers’ shared use and development of the Ubuntu system 
constitutes a community of practice around their collaborative work and 
commitment to the project. By positing the Ubuntu community as a 
community of practice, I explore how the Ubuntu hackers are using new 
technical and social means to manage and share knowledge and skills on-line, 
and how these means of learning and sharing are reflected in the system itself.
I argue that though the Ubuntu community offers complete access to every 
technical detail of the transparent system they develop, the social boundaries 
of this on-line community are defined through the active use and development 
of the system itself. Because of this, membership and participation in this 
community is gained through a shared history of learning the specialized 
knowledge and social norms this use and development requires, making the 
group of developers a meritocratic group joined only through dedicated 
collaborative work. Thus, despite the Ubuntu system solely consisting of free 
software, the freedom it offers can only be fully appreciated by hackers 
capable of developing it.
For this group of hackers, the Ubuntu system is the all-encompassing means 
offering them the freedom to fulfil their diverse personal, social motivations 
for contributing to the system. By building a system that works for each of 
them individually, the Ubuntu hackers come to construct a system which 
reflects their practices. But they also seek to ensure that the Ubuntu system, as 
well as the community of practice through which it is built, is open to all, 
depending on the users’ willingness to invest the time and effort to scale the 
steep curve of learning necessary to adopt, learn, configure, and even build 
the system according to their own needs, and master the core practices and 
social norms required for membership.
I argue that this shared practice and history of learning to collaboratively 
build and maintain the Ubuntu system results in a careful mutual trust in the 
hackers’ complementary abilities through which the integrity and solidity of 
the intricately complex Ubuntu system is guaranteed, and which the many 

11



users of the Ubuntu system come to rely on. And similarly, it is through this 
reciprocal trust that the diversity of motivations and conflicting interests 
within the community of practice is managed under the reciprocal big-man 
leadership and ethos of a few prominent and respected core Ubuntu 
developers.

Previous research on free software
It is only in the past few years that comprehensive anthropological field 
studies of free software communities have begun to appear. Inevitably, these 
field studies have been multi-sited as the researchers have sought to come to 
terms with the physically distributed and on-line nature of the hacker 
communities. Christopher Kelty (2003, 2005) did fieldwork among hackers in 
Boston, Berlin, Bombay, and Bangalore focusing on the role of reputation and 
on-line technical infrastructure in shaping free software communities, while 
Yuwei Lin's (2004) fieldwork alternated between a Linux User Group, hacker 
conferences and on-line collaboration as she focused on how software 
innovation takes place in free software communities, examining how such 
innovation may be related to a shared notion of “hacker culture.” And 
Gabriella Coleman's (2004, 2005) fieldwork, initially among San Francisco 
hackers and later among Debian Linux developers both on-line and off-line, 
focused on the hackers' ethical and political motivations for working with free 
software and their use of legal tools such as software licenses in maintaining 
the free availability of their work.
Meanwhile, other anthropologists, including James Leach (2005), Lars Risan 
(2005), and Gregers Pedersen (2006) have explored how the open sharing of 
source code within the free software communities relates to anthropological 
notions of gift culture and ownership as seen in ethnographic examples 
outside of the industrialized world. 
Anthropological interest arrived much at the same time as many other social 
scientists began to take notice of the free software movement starting with the 
success of Linux up through the 1990s.6 Indeed, the influx of scientific 

6  These social scientists began studying free software communities seeking to understand 
the inner workings of on-line collaboration, the open sharing of source code and the 
motivations for participating in such projects and their implications in such diverse 
disciplines as sociology (Kuwabara 2000, Castells 2001), philosophy (Himanen 2001), 
technology studies (Tuomi 2001), economics (Ghosh 2005a), business (O'Mahony 2002), 

12



attention to the free software communities has been so strong that the editors 
of the recent anthology “Perspectives on Free and Open Source Software” 
noted:

It has been said that the average Navajo Indian family in 1950s America 
consisted of a father, a mother, two children, and three anthropologists. Many in 
the F/OSS [Free/Open Source Software] community no doubt are starting to feel 
the same way, as what began as a software topic has attracted the efforts of so 
many researchers from sociology, economics, management, psychology, public 
policy, law, and many others. 
(Feller, Lakhani et. al.2004:xxv)

Most of these studies based their qualitative data on the publicly archived on-
line exchanges between hackers and on surveys of both source code and 
developers, but also, due to the highly technical nature of the field, directly on 
literature written by hackers.7 Many of whom act in a dual role as both 
informants for other academics and as academics themselves, making it 
difficult to distinguish between “indigenous” hacker interests and academic 
distance. One hacker, Eric Raymond, even refers to himself as “an observer-
participant anthropologist in the Internet hacker culture” (Kelty 2002:note 
18). So while it is true that free software communities have attracted attention 
from many academic disciplines, these communities differ from the case of 
the Navajo Indians in that much of the direct qualitative data used in these 
studies have been gathered by the hackers themselves, whose enthusiastic, 
self-reflective interest in their field has produced some of the best analyses on 
the topic.

Methodology
The scientific attention and the hackers' own self-reflective interest in their 
practices make the on-line free software communities a somewhat atypical 
anthropological field, since many of the experienced and well-travelled 
hackers have come to take the academic interest completely for granted, as I 

communication (Ratto 2003), political science (Weber 2004), and law (Moglen 1999, 
Lessig 2000, 2001, 2004) as they attempted to re-align their respective disciplines with 
regards to issues such as economical incentives, community and business collaboration, 
meritocratic governance and organization, ownership and copyright law.

7 Such as Raymond (1997, 1998), Riemens (2002), Reagle (2004), Hill (2004), Michlmayr 
(2004), Krafft (2006), Fogel (2005) and Stallman (2005).

13



found upon introducing myself at dinner on the first day of my first Ubuntu 
Developer Summit where the Ubuntu developers meet to plan the 
development, schedule and goals for the next release of Ubuntu: 
- “Another anthropologist! It seems that most free software projects have an 
anthropologist attached these days,” one of the veteran hackers at the table 
replied, to the general agreement of the other hackers at the table.8

- “Really?” was the best reply I could muster.
- “Yeah, I often find myself talking to people at conferences and they ask a lot 
of questions and I ask them what they do and they say some social science, 
and I ask 'is this ending up in your thesis' and they go 'yeah' in a sort of 
apologetic fashion.”
- “Sorry I couldn't be more creative in my choice of field” I responded, unable 
to hide my disappointment.
- “Oh, no,” he replied “it is definitely a field that deserves as much study as 
possible. I'm sure it'll be quite helpful.”
I soon found this to be the general attitude among the Ubuntu developers who 
for the most part shared a keen awareness that they are breaking new ground 
socially, economically and politically. As another developer said put it, “We 
are your fruitflies,” arguing that much like insects bred for accelerated 
evolution for easy study, the free software communities are moving so quickly 
that it is a space not only for easy social experimentation but also for studying 
such radical social development in the making.
Many hackers, especially those with academic backgrounds, felt some kinship 
with me and sought eagerly to distance themselves temporarily from the 
community to offer their own observations and analysis of the community, as 
well as being very interested to hear mine. The narratives and observations 
they supplied were already scrutinized under their own analytical gaze before 
being passed on to me, showing how these hackers continually seek to master 
the dynamics of the communities of which they are part, as if it is a 
mathematical puzzle to be solved. I shared in these reflections while keeping 
a continuous anthropological focus which the hackers neither sought to nor 

8 I haven't been able to confirm this notion. I met only one other anthropologist doing 
fieldwork in a free software community during my fieldwork, and from what I have been 
able to surmise, most hackers tend to lump the various social sciences mentioned above 
together as anthropologists or social scientists. In either case, there is still very little 
anthropological work which has been published on the free software communities.

14



could maintain outside of the specific discussion. 
Christopher Kelty, one of the few academic anthropologists in this field, has 
sought to operationalize his informants' self-reflection by making a distinction 
between what he calls first-order observation – the traditional qualitative data 
gathered first-hand by the anthropologist – and second-order observation – 
the descriptions and analyses “made by the actors that we are supposed to be 
studying.” Kelty concludes that “It amounts to a situation where we compete 
with a lot of other people who are also providing explanations for the 
situation that we find ourselves amid,” as we almost recursively are forced to 
examine not only the social facts themselves, but also the actors' 
representations of those facts and other actors' representations and 
understandings of those representations (Kelty 2003).
I find Kelty’s first- and second-order distinctions useful to separate the 
reflections expressed and disseminated by hackers through the free software 
communities from my own fieldwork data where I could observe and 
correlate the actual actions of the Ubuntu hackers directly with the reflections 
which they expressed in the interviews. This focus on the hackers’ day-to-day 
practices in relation to their own second-order reflections on these is inspired 
by my reading of the French anthropologist of science Bruno Latour's studies 
of the work practices of scientists (Latour 1987). Latour argues that in order 
to understand scientific and technical work, it is necessary to study the 
process, networks, action, and forms of labour through which that work is 
created. And, that once a scientific fact has been settled or a machine runs 
efficiently, the scientists and engineers using it come to take it for granted as 
they only need to focus on its inputs and outputs rather than its internal 
complexity, thus turning that body of work into a black box (Ibid: 2-3). 
Latour's studies are based on the unfolding of such scientific or technological 
black boxes, by tracing the network of practices, processes and actors through 
which they are constructed. I use Latour’s approach as a methodological 
premise to examine how the software of the Ubuntu system is used and 
negotiated both socially and technically through practice, thus inductively 
exploring the interrelations between the Ubuntu system and the Ubuntu 
community. But though Ubuntu and other free software projects may appear 
to be a Latourian black box to me and other non-hackers, its radical technical 
openness through its source code and public processes allows hackers to 

15



study, adopt, adapt and rework it continuously, making the system a 
transparent white box to the few capable of appreciating it. Thus, I seek to 
follow the Ubuntu hackers as they navigate this white box in order to unfold 
the layers of social and technical complexity of which it consists.

In order to examine how the Ubuntu system is developed and its role as the 
centre of gravity of the Ubuntu community, I spent 6 months participating in 

16

Illustration 2: The Ubuntu system as a transparent white box: Layers upon layers of  
source code openly available to the knowing user – the hacker – to constantly  
renegotiate, challenge, and redefine according to his needs.



the development of Ubuntu, including a complete Ubuntu development cycle 
from June to November 2006.
Based on the insights of Coleman (2005) and Lin (2004), I sought to integrate 
the on-line and in-person aspects of my fieldwork as closely as possible, and 
following my first in-person meeting with the Ubuntu hackers at the Ubuntu 
Developer Summit in Paris in late June 2006, I sent out a fieldwork visit 
request to 22 of the Ubuntu developers I had met there. Between August and 
November, I gradually spent more and more time visiting the hackers in their 
own working environments, participating in their everyday life and 
interviewing them, as well as taking part in the interactions of the whole 
community on-line. I visited a total of 17 developers in 5 different countries 
in Europe and North America before ending my fieldwork at the following 
Ubuntu Developer Summit in Mountain View, California in November 2006, 
an event which gave both coherency and closure to the project.
Naturally, the methods I used and the data I gathered depended on whether I 
was in an on-line or an in-person context. The on-line context is wholly 
textual: Not only is all of the technical construction and maintenance of 
systems and infrastructure built through textual source code, but all of the 
communal means of communication and socialization also take place through 
a textual dimension through mailing lists, blogs, web forums, and Internet  
Relay Chat (IRC) channels9 through which the Ubuntu developers interact 
and collaborate. 
In order to do participant observation in this on-line space, I began 
contributing to the system by writing the system help and documentation, 
rather than the system itself due to my lack of technical understanding. In this 
way, I could take part in shaping Ubuntu alongside other community members 
while slowly developing a feel for the everyday exchanges and work in the 
community. But despite this participation, I was frustrated at my inability to 
participate fully in the on-line technical exchanges, and talk with the core 
developers, and it wasn't until I met the hackers in-person that I felt like I had 
really entered the field and became able to relate fully to the Ubuntu hackers.

9 Developed in Finland in 1988, IRC made realtime textual interaction possible on a global 
scale. With IRC, a user can engage in several public discussions – so-called channels – as 
well as initiate multiple private conversations at the same time. Expert users deftly 
navigate back and forth between conversations, fluidly interacting with their on-line 
friends and co-developers.

17



The casual and often asynchronous on-line interaction was offset by the 
intense in-person interaction when visiting the individual developers or 
participating at conferences. During the five free software conferences I 
participated in, I met and talked casually with a lot of different individuals. I 
introduced myself as an anthropologist studying the Ubuntu community and 
never once was I asked to explain what an anthropologist is, much in keeping 
with the self-reflexivity discussed above.
When visiting the individual developers in their homes, I usually stayed with 
each developer for a few days, working alongside him and participating in his 
daily routines. Despite some initial concern for their privacy, the developers 
were generally very hospitable. But I was very conscious of not letting my 
visit disturb their daily routines too much, since that would to some extent 
compromise the everyday nature of the setting I sought to study. 
Being in their homes and meeting their families and friends brought all of the 
loosely defined on-line and conference world into a well-defined real-life 
situation which I fleshed out through hours of interviewing, delving into the 
informants' background, especially with regards to computers and free 
software. A central part of the visits was the humanly mediated computer 
interview (Markussen 2002) – an attempt to explore the digital space of file 
hierarchies, social contacts and links contained within the informant's 
computer, with the informant as a guide explaining his configurations of the 
Ubuntu system. Since the informant's use of the computer was mediated 
through himself in this way, it is difficult to separate a hacker's actions from 
his descriptions of his actions, so I used  "think-aloud" protocols (Lethbridge 
2005), sitting with the developer as he worked through one or two of the tasks 
on his to-do lists, having him explain step-by-step his concerns and 
considerations in solving those tasks, and asking for examples of concrete 
situations and work cases where I could ask the informant to walk me through 

18



the on-line paper trail he had left behind in order to see how he related to his 
own interactions on-line. This set the individual developer's tasks into context 
within the greater whole of the continuous development process of Ubuntu 
and not only helped to compensate for my lack of technical expertise, but also 
exposed just how much my understanding of these processes was mediated by 
the developers themselves, who, by continuously adapting, reworking and 
studying the system, came to appreciate its technical details as a transparent 
white box. I sought to alleviate this mediation by moving my focus from the 
specific tasks to the hackers’ shared interactions in order to unfold the 
community of practices that define the white box of the Ubuntu system.

Theoretical approach of the thesis
Through my focus on a single free software project in order to study the 
developers’ concrete collaboration and negotiation of the system which they 
produce, I came to consider the day-to-day issues and practices taking place 
in that space as inductively constituting what the educational theorists Etienne 
Wenger and Jean Lave have called a community of practice (Wenger 1998). A 
community of practice is more than a shared practice associated with a 
technical skill or specific knowledge, it consists of social relationships 
developing around shared interests, concerns and goals where members act as 
resources for one another, sharing activities and socialising through a shared 
set of routines, tools and norms (Ibid. 45-47).
In this way, I adopted a different approach than the anthropological studies of 
Coleman, Kelty and Lin mentioned above, which had focused on a wider 
notion of “hacker culture” by gathering data among hackers in general, 
following themes such as reputation, reciprocity, innovation and ethics across 
conferences and projects.10 Especially Gabriella Coleman’s ethnography of 
the Debian Linux community (2005) has inspired my own, and despite her 

10  It is worth noting that both Yuwei Lin (2004) and Matt Ratto (2003) identify the on-line 
hacker communities which they examine as communities of practice. While Ratto 
mentions it only in passing, Lin uses the term to explode the notion of a unified hacker 
culture, arguing that “the notion of ‘hacker’ acts as a boundary object that allows 
individuals to articulate their perceptions of, and perform collective practices in, the 
hacker social world. ” (Lin 2004:279). But since she uses Wenger's theory solely in 
relation to her chosen theme of IT innovation in free software communities, and not to 
examine the specific practices within a project, I find I can use little of her insight in 
relation to my examination of the Ubuntu community.

19



distinct research focus, her conclusions with regards to hacker ethics and the 
importance of in-person meetings is a reference throughout this thesis. 
Similarly so with Christopher Kelty's insights regarding the role of hacker 
informants' self-reflexivity and use of source code as means of argument in 
shaping and defining on-line communities. In combining these insights from 
related fieldworks with Wenger's overarching idea of the community of 
practice, I have sought to define a durable structure to examine the different 
elements of the Ubuntu community through. Following Wenger's claim that a 
community of practice is defined through three dimensions of relation, 
namely mutual engagement, joint enterprise, and shared repertoire (Wenger 
1998:72-85), I have built a strategically selected constellation of theories to 
describe and analyze each of these dimensions in relation to the practices of 
the Ubuntu hackers.
Mutual engagement refers to the shared practices revolving around 
complementary contributions, overlapping forms of competence, and 
everyday sociality, which bind members of a community of practice together 
into a social entity. I draw upon Claude Lévi-Strauss' dichotomy of the 
engineer and the bricoleur (Lévi-Strauss 1994) to distinguish the 
complementary elements of the Ubuntu hackers' mutual engagement in 
developing the Ubuntu system. Furthermore, I use the American philosophers 
Clark & Chalmers' notion of active externalism (Clark & Chalmers 1998) to 
explore how Ubuntu developers extend their mind unto the computer in order 
to maintain the flow of interaction necessary for their shared development 
work on-line.
Joint enterprise consists of the diverse interpretations and motivations, 
which each developer brings to the community to be joined and continually 
renegotiated as the shared goal of the project, and in turn shaping the practices 
of the community. In seeking to understand the individual developers' 
motivations for their work, I draw upon Alfred Gell's theory that the aesthetic 
values worked into a given artefact also mediates the social relations between 
the maker and the spectator (Gell 1999). I build on the hypothesis that the 
way the Ubuntu developers relate to their code and imbue it with different 
aesthetic values reflects their diverse motivations for writing and contributing 
that code to the project, and that these contributions come to shape the shared 
goals of the project.

20



Following this, I also examine what Wenger calls mutual accountability, 
which springs directly from the negotiation of the joint enterprise as means to 
manage the individual motivations of the developers. I use the Australian 
media researcher Matt Elliott’s notion of stigmergic collaboration and 
Christopher Kelty's exploration of how free software hackers build trustful 
reputations through development (Kelty 2005b) to link the Ubuntu hackers' 
reciprocal trust in each others’ abilities with the reciprocal rule of Melanesian 
big-men as elucidated by Marshall Sahlins (Sahlins 1963).
Shared repertoire consists of the capabilities, the communal resources, the 
routines, sensibilities, artefacts, vocabulary, and styles that members have 
developed through their mutual engagement over time. In the case of the 
Ubuntu hackers, a central part of this shared repertoire is the Ubuntu system 
itself. I use Tim Ingold's notion of dwelling to describe how the individual 
hacker adapts the Ubuntu system for their personal use, both on the local 
computer and on-line, making the system itself the multiply inhabited, shared, 
and continually built scene of their shared interaction.
These three dimensions of practice are tied together through what Wenger 
calls a shared history of learning (Wenger 1998: 86ff). As the practices of a 
community slowly change, adapting to match its continuously changing 
technical and social circumstances, its members are tied together by the 
shared history of continuously ongoing learning through which they maintain 
their membership. It is by exploring the Ubuntu hackers’ shared history of 
mutual engagement, joint enterprise, and shared repertoire, of learning 
through practice, that I seek to examine the community of practice around the 
Ubuntu system.

Structure of the thesis
The thesis seeks to explore the web of social, cultural and historical 
connections of the community of practice in which the Ubuntu system is 
made. Through five chapters, I will use five different social, technical and 
historical perspectives to give a nuanced description and analysis of the 
Ubuntu system. Through these perspectives, I will build on Etienne Wenger’s 
suggested three dimensions of relations that compose a community of practice 
to examine how these fit with the practices of the Ubuntu hackers. 
Starting with chapter 2, I will examine the Ubuntu system through a 

21



historical perspective on the cultural and technical values upon which it is 
built, not only in order to give the background necessary to understand the 
argument of the following chapters, but also to outline the overall goals of the 
Ubuntu community through which the joint enterprise of the individual 
hackers are negotiated by answering the questions: Where did the project and 
the system come from? Which goals does the project strive to achieve? Based 
on second-order hacker reflections and narratives as well as the insights of 
other researchers in the field such as Gabriella Coleman and Steven Weber, 
this chapter will give a short introduction to the history of the personal 
computer and and the distributed development of the Unix operating system, 
which afforded the technical platform for customization and development that 
inspired the social context of the free software eco-system into which the 
Ubuntu project was born.
The Ubuntu system contains more than 19.000 software packages, each 
developed with its own technical quirks and social relations, by developers 
particularly interested in that package. In chapter 3 I focus on the case study 
of Synaptic, one such software package, through a sociological perspective, 
based on interviews and think-aloud protocols, in order to describe the 
personal backgrounds and everyday lives of the two Ubuntu hackers 
developing it, and the close and personal collaborative practices through 
which Synaptic has been – and continues to be – developed. Through this 
description, I seek to answer two questions: Who are the people working on 
the system? How do they work on it? In order to explore the mutual  
engagement shared between the developers by drawing upon Claude Lévi-
Strauss and Clark & Chalmers in analysing how the Ubuntu hackers’ shared 
practices are complementary, depending one the knowledge and interaction 
with one another, as well as the flow afforded by the intimate work with the 
computer.
In chapter 4, I widen my perspective from the one-on-one collaborative 
practices of the Synaptic hackers to the ways in which the Ubuntu hackers 
negotiate the joint enterprise of the project by bringing their diverse 
motivations and interests in play in their personal contributions to the Ubuntu 
system in order to answer the question: Why do they contribute to the Ubuntu 
system? I draw upon Alfred Gell to analyze how the developers of three 
different Ubuntu software packages imbue their code with different aesthetic 

22



qualities based on their different motivations, and how these motivations may 
come to conflict. I compare these motivations with the second-order 
explanations of hacker aesthetics and ethics commonly given by the hackers 
themselves to conclude more specifically on the nature of the joint enterprise 
of Ubuntu as touched upon in chapter 2. 
Having examined the everyday hacking practices and individual motivations 
of the Ubuntu hackers, in chapter 5, I turn to a phenomenological perspective 
in order to examine how each Ubuntu hacker individually adopts and 
customizes the system as a whole for their personal use and development 
practices in order to answer the question: How do the hackers themselves use 
the system? I draw upon a case study from my humanly-mediated computer 
interviews of one hacker’s configuration of the Ubuntu system as well as the 
Tim Ingold’s notion of dwelling in order to analyse the Ubuntu system itself 
as the all-encompassing means that both the Ubuntu hackers and users come 
to depend upon, and as the shared repertoire through which the Ubuntu 
hackers develop their mutual engagement in the project over time. 
This will set the stage for chapter 6 where I will explore how the individual 
Ubuntu developers’ collaborative practices, motivations and uses of the 
system are negotiated from a community- and system-wide perspective. I will 
seek to answer the question: How do the Ubuntu hackers negotiate and take 
responsibility for their shared work on the Ubuntu system? and I do this by 
drawing upon Matt Elliott’s concept of stigmergic collaboration to explore 
how the individual Ubuntu hackers are empowered to maintain and extend the 
system. Following this, I will use Christopher Kelty’s work on on-line 
reputation and trust as well as Marshall Sahlins’ ethnography of Melanesian 
big-men to analyze a situation where this open collaboration results in a 
breakdown of trust, and how mutual accountability is ensured through a 
reciprocal trust defined through both technical and social means, which, along 
with a few trusted hackers’ reciprocal big-man leadership manages the 
diversity and conflicting interests of the community to guarantee the stability 
of the system
Finally, chapter 7 will sum up my main argument by revisiting how the 
hackers' mutual engagement, joint enterprise, and shared repertoire are 
expressed through their motivations, goals, practices, use and discussions of 
the system. And how the shared history of learning and adapting to these 

23



practices shape the intricately complex white box that is the Ubuntu system.

24



Chapter 2

Tracing the cultural and technical roots of the Ubuntu 
system

We build our computers the way we build our cities -- over time, without a plan, on top of 
ruins.

- Ellen Ullman (1995)

Despite being a young endeavour, Ubuntu, both as a community and an 
operating system, builds on traditions from IT industry and computer science 
academia going back to the first digital computers. In this descriptive chapter, 
I draw upon leading hackers’ own second-order narratives and reflections of 
this history, as well as relevant analytical insights from social scientists in the 
field to outline the origins of technical and social values and practices carried 
on in the Ubuntu system and its development community in order to present 
the free software communities in sufficient detail to understand the 
background of the Ubuntu project. This includes its overall institutional 
humorous-but-serious goal of “world domination” based on which the Ubuntu 
hackers negotiate what Etienne Wenger calls their joint enterprise – their 
individual motivations and interpretations of those overall goals (Wenger 
1998:77-82) which in part defines the Ubuntu community of practice.

The personal computer and proprietary software
In 1975, the Altair 8800, the first computer affordable to home users became 
available, and soon after its appearance, a market for selling commodity 
software was established. Up until this point, software had been considered by 
the IT industry as an added benefit bought with a computer, or something that 
had to be written on the computer for a specific purpose. The Altair was the 
first commodity computer for which the manufacturer did not provide 
generalized software, and so software had to be written or bought separately. 
Seeing a golden opportunity, two young hackers, Bill Gates and Paul Allen, 
wrote a version of the popular and accessible programming language BASIC 
for the Altair which greatly increased its programming potential. But not all of 
the interested users could stand waiting for their copy of the BASIC paper 

25



tape to arrive in the mail, and they began making copies of the versions that 
had already arrived and shared them among themselves following the rule that 
if you took a tape, you should bring back two copies to give away at the next 
meeting of their monthly Silicon Valley “homebrew computer club” meeting 
(Levy 1994: 227-229). This copying angered 19-year old Gates so much that 
he wrote an “Open Letter to Hobbyists” which was published in the 
Homebrew Club Newsletter: 

Most of these "users" never bought BASIC (less than 10% of all Altair 
owners have bought BASIC) [...] Why is this? As the majority of hobbyists 
must be aware, most of you steal your software. Hardware must be paid for, 
but software is something to share. Who cares if the people who worked on it 
get paid? [...] Who can afford to do professional work for nothing? What 
hobbyist can put 3-man years into programming, finding all bugs, 
documenting his product and distribute for free?
(Gates 1976)

Gates' idea of selling software met criticism from both the hobbyist hackers, 
who found it imperative to share the software so that everybody could use it 
and learn from it, and from business people who objected that it was 
impossible to sell something which was basically just a string of 1s and 0s 
which could be copied so easily (Stephenson 1999:33). But the latter soon 
changed their minds as personal computing began to spread, and the demand 
for usable applications and games grew among users outside the hacker 
community. 
As political scientist Steven Weber points out, this was the first clash between 
the nascent ethics of open source and proprietary software – two 
fundamentally different economic models for the production of software 
(Weber 2004:37): Proprietary software requires the source code to be closed 
to the user so that he is unable to copy and modify it as he pleases, both to 
avoid new versions of the software that the company cannot support, and to 
avoid unlicensed redistribution from which the company does not profit. In 
opposition to this is the open source model which requires the free sharing 
and modification of source code in order for any interested hacker to be able 
to use and adapt the code to his needs, whether profitable or not.
While many hackers continued to share the source code to their programs, it 
mostly happened in such a casual manner on tapes and floppy disks at 

26



computer clubs and universities that was no match for the market-driven 
explosion of commodity software that arrived with the personal computer. By 
1981, the new PC market was dominated by Apple Computer, a company 
started by Steve Jobs and Steve Wozniak, two members of the same computer 
club that had frustrated Gates so. At this point IBM, the old industry leader, 
finally introduced a PC of its own, bundled with the MS-DOS operating 
system developed by Bill Gates' company, Microsoft. Apple integrated its 
hardware and its operating system Mac OS, which by 1984 included a mouse-
driven graphical user interface (GUI), tightly together in order to make 
computer as appealing as possible to the wider public. Microsoft on the other 
hand sold MS-DOS, and later their own GUI superstructure Windows, 
separately to all of the competing hardware producers who had begun making 
IBM-compatible PCs. With a shared software platform, the price of 
commodity hardware plummeted, making personal computers even easier to 
build or buy, and by the mid-1990s, Microsoft dominated the PC operating 
system market completely (Stephenson 1999:80-90).

Free software and the heritage of Unix
Up through the 1970s, as PCs and commodity software changed the IT 
industry landscape, another operating system called Unix, first developed in 
1969, was becoming very popular on powerful multi-user computers at 
companies and universities around the world (Salus 1994: 119-136). Its 
popularity stemmed from an empowering design philosophy “that users know 
better than operating system designers what their own needs are” (Raymond 
2004:6), and the fact that AT&T, whose engineers developed Unix, had been 
forbidden from entering into the computer business as a result of a settlement 
in an anti-trust case in 1956, which required the company to license its non-
telephone technology to anyone who asked (Ibid:33-34). Since its inception in 
1969, Unix has seen such widespread adoption and development that hacker-
turned-novelist Neal Stephenson describes it as the hacker “Gilgamesh epic:” 

What made old epics like Gilgamesh so powerful and so long-lived was that 
they were living bodies of narrative that many people knew by heart, and told 
over and over again – making their own personal embellishments whenever 

27



it struck their fancy. The bad embellishments were shouted down, the good 
ones picked up by others, polished and improved and, over time, 
incorporated into the story. Likewise, Unix is known, loved, and understood 
by so many hackers that it can be re-created from scratch whenever someone 
needs it.
(Stephenson 1999:88)

Like an oral history, Unix, and most other software with shared open source 
code, was developed slowly over time, shared and copied on disks at 
conferences and at user group meetings where users could take the bits they 
liked and improve on them, and thus slowly improve system, hoping that their 
changes might be adopted by AT&T for the next official Unix release. Unix 
did not play much part in the rise of the personal computer since it was 
designed for expensive high-end equipment that was mostly unavailable for 
hobbyist hackers, and because another anti-trust case against AT&T in 1983 
allowed the company to commercialize Unix and charge exorbitant license 
fees for all use of the source code (Weber 2004:39). This made the sharing of 
source code and programming ideas that defined the university hacker 
communities very difficult, as any hacker would have to sign a non-disclosure 
agreement in order to access the system. 
Richard Stallman, a hacker at the MIT Artificial Intelligence lab, found it  
morally intolerable for an owner of software to say “'I won't let you 
understand how this works; I'm going to keep you helplessly dependent on me 
and if you share with your friends, I'll call you a pirate and put you in jail.'” 
(quoted in Moody 2001:28), and in 1984, he quit his job at MIT in order to 
devote himself to what he called free software – software that anyone can 
freely could study, use, modify and redistribute in any manner they please as 
long as they also freely redistribute their own changes to the source code. To 
advance his goal, he began writing a completely free version of Unix which 
he, in a typical case of hacker wit, called GNU – a recursive acronym for 
“GNU's Not Unix.” And building on the same “oral tradition” described by 
Stephenson, interested hackers soon began to send him improvements and 
suggestions, which he could incorporate in new releases of the GNU 
programs. 

28



As the project grew, Stallman created the GNU General Public License (GPL) 
to legally ensure that the GNU programs would remain free software. The 
GPL ensured that users could not modify the rights granted by the GPL to any 
user, meaning that any GPL software even if improved and combined with 
non-GPL software could only be redistributed on GPL terms. 
Gabriella Coleman points out that with the GPL Stallman cleverly hacked 
traditional copyright law by inverting it: It was not a question of enforcing an 
authorial monopoly, but to ensure that his software was freely available and 
impossible to monopolize, in effect coercing all users of his software to give 
away their own improvements (Coleman 2005: 85-87). In this way, Stallman 
managed to use the GPL to formalize a sort of generalized reciprocity where 
“the return favour is not determined by time, quantity or quality: the 
expectation of reciprocity is indefinite” (Sahlins 1972). 
Sahlins' definition depends on social proximity, but as Christopher Kelty 
argues, with digital technology and its inherent possibility of endless copies at 
zero-cost, the F/OSS community has succeeded in scaling this system of 
exchange from a local level to a global one through software licences such as 
the GPL (Kelty 2002). The reciprocity of GPL'd software, implicit in the “oral 
tradition” of Unix, does not lie in the individual transaction or specific social 
relationship between developer and user, which is often anonymous or even 
non-existent, but rather in the general shared interest and use of the code. 
Economist Rishab Ayer Ghosh compares it to a tribal cooking pot where each 
hunters contributes a small piece of meat and all can take out a bowl of stew 
of increased value (Ghosh 2005a). The anthropologist James Leach stresses 
that though each hacker retains complete copyright and ownership over his 
own code, it is only when combined with the rest of the GPL'd code that that 
code becomes coherent and valuable, thus GPL code is multiply owned by all 
contributors (Leach 2005). Thus, as Gregers Petersen concludes, free software 
is a culture of sharing, rather than one of gift-exchange, where each 
contributor cedes the right to control his property, sharing it freely under the 
condition that all other contributors will do the same (Petersen 2006).

The Linux open model of development
By 1991, Stallman and other contributors had produced almost all of the 
components required for a complete free Unix system, which he distributed 

29



over the still-nascent Internet. Up through the 1980s, access to the Internet 
had, much like Unix, generally been limited to major companies and 
educational institutions that could afford the expensive Internet infrastructure 
and Unix licenses. But the hackers there would rather use the GNU utilities 
than the proprietary Unix code which they could no longer freely hack. One 
of these hackers was Linus Torvalds, a young Finnish Computer Science 
student. Frustrated at waiting in line at the university Unix terminals, Torvalds 
wanted to run Unix on his new PC at home in early 1991, and all he needed to 
complete his GNU system was a kernel – the core program which allocates 
resources to the various applications and users present on the system – which 
he experimentally began to write over the summer holidays that year.11 Since 
Finland had invested heavily in telecommunications infrastructure, he was 
one of the first to have Internet access from home, and on October 5th, he 
announced his kernel project on the Internet:

This is a program for hackers by a hacker. I've enjoyed doing it, and 
somebody might enjoy looking at it and even modifying it for their own 
needs. It is still small enough to understand, use and modify, and I'm looking 
forward to any comments you might have.
(quoted in Moody 2001:45)

Torvalds' project became known as Linux. And though it used an out-dated 
design and just barely worked, it did make it possible to run a free Unix 
system on commodity hardware. Hackers who wanted to use Unix at home 
soon began to adopt Linux, since it was a system with potential for growth, to 
which they could contribute and which generally seemed like a lot of fun.
What was remarkable about Linux was that Torvalds embraced the fact that 
the Internet allows people from all over the world to collaborate instantly 
whereas earlier, such collaboration had been limited to the slow and random 
“oral history” exchange of tapes and disks. He used the Internet to constantly 
release new, rough versions of the code for others to test simply by making it 
available for download on-line, incorporating patches – code improvements – 
and suggestions which other hackers sent to him, discussing designs and plans 

11 Torvalds based his design on Minix, a small redesigned version of the Unix kernel made 
by computer science professor Andrew Tanenbaum for educational purposes. Tanenbaum 
refused to collaborate with Torvalds, as he considered his design to be old and awkward.

30



on mailing lists and giving them the opportunity to add their own changes as 
they proved themselves technically capable. This open model of development 
had Torvalds acting as a focal point for the community due to his intimate 
technical understanding of the project and diplomatic mailing list leadership 
(cf. Ratto 2003). 
This was completely unlike the closed model of development typically used 
within the IT industry. Considered the only viable model, the closed model 
focused on a tightly knit group of developers sitting together to collaborate 
intimately to produce a release according to the tight deadlines and many 
feature specifications traditionally imposed upon them by the management, 
the rule being "Adding manpower to a late software project makes it later" as 
each new team member took up resources for training and integration into the 
team (cf. Brooks 1995). Even the GNU project, with all its freedom of 
modification and redistribution, had kept its development process closed to 
ensure an effective work environment, and only rarely released new versions, 
incorporating suggested changes based on closed discussion.
The open development model of Linux presupposed that the source code was 
openly available to anybody interested in participating in the project – a 
stance that was incompatible with proprietary software development where a 
closed development model is the only way to ensure that others couldn't steal 
the work and trade secrets being developed. In a seminal paper first 
recognising the differences between the two models of developement, hacker 
Eric Raymond characterized the closed development model as a cathedral: A 
closed structure architected and maintained by a chosen few compared to the 
open model of development which he remarked often “resemble[s] a great 
babbling bazaar of differing agendas and approaches,” the centre of which is 
the individual hacker's need to scratch his own itch and make the software 
work well for his own needs (Raymond 1997).
Raymond's metaphors build a generalized and idealized dichotomy between a 
monolithic, authoritarian, closed (and thus inherently bad) Cathedral against a 
democratic, distributed, open (and thus inherently good) Bazaar. Raymond's 
dichotomy has a clear political agenda as he seeks to position free software at 
the positive pole of his libertarian worldview by comparing the open 
development model to an idealized capitalist free market where self-interest  
drives an open exchange between equals. Yet Raymond's metaphor turns out 

31



to be severely imprecise, as the open development model still tends to work 
through a centralized meritocracy led by project leaders such as Linus 
Torvalds, while several observers have noted how closed development 
companies such as Microsoft or Apple function like idealized open 
development models internally within their organizations (cf. Bezroukov 
1999). Furthermore, as computer scientists Antony Senyard and Martin 
Michlmayr have shown, most successful free software projects are initially 
characterised by closed development by a small group of developers similar 
to traditional software development, and it is only once its code base has 
matured sufficiently to be somewhat usable that it can bloom into an open 
model of development (Michlmayr & Senyard 2004). Certainly, the main 
significance of the open development model lies in the on-line public nature 
of its collaborative environment and sharing of source code which allows for 
a much greater degree of interaction and integration between previously 
unrelated software projects, but to claim that this in itself guarantees an 
egalitarian and open process would be faulty.
Linux soon matured, and when Torvalds licensed it under the GPL, the free 
Unix system that Stallman and thousands of hackers around the world had 
worked and hoped for became a reality.
For a new generation of young hackers accustomed to the binary opacity of 
MS-DOS or Windows, finding GNU/Linux – a massive feat of engineering 
built with the architectural transparency of Unix and with all its millions of 
lines of source code freely available – was nothing short of an epiphany (cf. 
Coleman 2005: 292), and with the introduction of the World Wide Web and 
the following commercialization and popularization of the Internet from the 
mid-1990s, more and more hackers all over the industrialized world began to 
get involved with Linux and free software on their own PCs at home, User 
Groups and conferences began to appear for Linux in much the same manner 
as they had for Unix 15 years earlier.
With all of this success in the face of the massive market dominance of 
Microsoft, Torvalds was quoted as defining his plan for the future as “World 
domination. Fast,” which has since become a recurring humorous-but-serious 
theme as the primary goal of many free software projects.
I contend that this near-epiphanic finding and learning to use GNU/Linux, 

32



along with discovering the possibilities of on-line collaboration constitute a 
central part of the shared history of learning (Wenger 1998: 86ff) of skills and 
norms that that defines the Ubuntu community of practice, and that it is 
through the same kind of youthful enthusiasm and ambition displayed by 
Linus Torvalds that many hackers come to understand their joint enterprise.

Debian and the free software eco-system
As interest grew, so did the collaboration between projects, as more and more 
applications came to be supported under Linux, and even more began to be 
written directly under the GNU GPL for use with Linux. Despite its growing 
popularity, it was still a formidable task to get Linux installed and functional 
as it involved compiling, configuring and maintaining everything yourself. To 
make it easier to install and run Linux, distributions of Linux began to appear, 
integrating much of the new software with GNU/Linux for easier installation 
and maintenance. In this way, a flow of new software packages appeared as 
the distributions sought to incorporate the latest changes from the Linux and 
GNU projects into their releases. This flow has made it common to refer to 
projects like the Linux kernel as the upstream for the distributions which in 
turn are the downstream for the original developers. Many hackers call this 
the free software eco-system as it is characterized by heavy interdependence 
between the projects – not only between the upstream software producers and 
the downstream integrators and redistributors, but also between the various 
upstreams who use the tools written and provided by other upstreams (cf. 
illustration 3).

33



Many of these early distributions were made by software companies such as 
Red Hat and SuSE that based their business on added value, support and 
services to the Linux operating system which they integrated in a closed 
development model. In opposition to this was the non-commercial Debian 
distribution, founded in 1993 by young hacker Ian Murdock who sought to 
build an on-line community of volunteers to collaborate in the same open 
model of development used by the Linux kernel hackers. Taking 
infrastructural and collaborative pointers from the development of Unix and 
Linux, Murdock sought to make distribution development as modular as the 
core operating system itself by managing the upstream software as modular 
software packages in order to integrate the work of all of the upstreams in one 
distributive system. Each software package was to be integrated and 
maintained by a Debian developer in order to maintain a clear line of 
responsibility between the upstream and the distribution. 
For instance, the upstream GNU developers release a new version of the text 

34

Illustration 3: A simplified diagram of the free software eco-system centered around the  
flow of software from the upstream developers such as GNU and the Linux kernel  
downstream through the distributions such as Debian and Ubuntu which integrate and  
distribute it to the users.



editor Emacs.12 The Debian developer responsible for Emacs then acquires the 
source code for this latest version, tweaking, configuring and compiling it to 
ensure that it works with the rest of the Debian system – since some packages 
depend on the presence of other packages on the system in order to work, it is 
necessary to check that these will work with the new version as well. He then 
builds a new Emacs package consisting of the original source code and his 
own patches and uploads the new Emacs package to the on-line Debian 
archives from where it can be downloaded and installed on the individual 
Debian systems using a package management tool – a specialized program for 
the installation, removal and updating of the modular packages of the system.
Since the Debian developers patched the upstream source code to ensure that 
it worked with their system, they also risked introducing new bugs – 
programming and design errors in the software – into the software. In order to 
keep track of these, the quickly growing Debian community also developed 
an on-line Bug Tracking System – an on-line database where developers and 
users could register the bugs they found in the Debian packages so that they 
could be tracked to see whether they came from upstream or whether they had 
been introduced downstream. The Debian Bug Tracking System created a 
public forum centered around bugs within each package and the related 
discussion of their severity and proposed solutions. Keeping an open and 
public record of the errors of the software is the essence of the open 
development model, since it allows any interested hacker to find confirmation 
of a suspected bug and participate in fixing it.
At first, the Debian Developer community was open to all interested hackers 
but as the project grew, an application process was instituted to ensure that 
new Debian Developers were not only technically capable but also able to 
discern whether a software license (of which there are hundreds) is 
compatible with Debian's policies of supporting the free software dogmas and 
refusing to ship software not under open source licenses in order to keep 
Debian secure against potential lawsuits (cf. Coleman 2005: 394-407). 
Jordan, an Ubuntu contributor, compares the process of becoming a Debian 
Developer to getting a PhD as it requires much dedication and skill and can 
take months or even years to get approved. The Debian Developers have built 
an egalitarian community with intricate on-line voting schemes and annual 

12 For more on the history and development of Emacs, see Kelty 2006, Lin 2004.

35



elections for the position of Debian Project Leader (DPL) from which 
Murdock stepped down in 1996. Yet all the non-technical contributors for 
such areas as artwork, documentation and distribution who do not have the 
technical expertise to apply have no vote or influence over the direction of the 
project, and there are strong groups with much vested power even among the 
Debian Developers themselves which control vital processes within the 
community (cf. Coleman 2005).

Ubuntu and the commercialization of Linux
While Debian developed the communal aspects of free software development, 
the dot-com boom of the late 1990s brought Linux into the broader public 
eye. Due to the increasing industry interest for Linux webservers, a growing 
number of developers agreed on rebranding Linux and the open model of 
development as open source, as they were unhappy with the ambiguity of the 
term free software in a business context. This sparked debate in the developer 
communities between those who saw the central part of free software to be 
the pragmatic use of the source code – including use in conjunction with 
proprietary closed source software, and those who saw free software as the 
only, dogmatic way to ensure their uncompromised freedoms in the form of 
the generalized reciprocity formalized in the GPL (cf. Weber 2004: 112-115). 
This rebranding facilitated the IT industry to embrace the open model of 
development without having to relate themselves directly to Stallman's 
software freedoms, enabling them to find viable business opportunities in free 
software.
One Debian Developer who managed to do this was a young South African 
entrepreneur named Mark Shuttleworth. In the late 1990s, he built a digital 
signature business based on Debian technology, eventually selling his 
company at the height of the dot-com boom and became a multi-millionaire 
nearly overnight.
After spending a couple of playboy years becoming the first African and the 
second tourist in space, he began to consider how to invest his money. 
Thankful for all the free software tools that had made his success possible, he 
decided to give back to the free software communities, and having seen how 

36



proprietary software like Microsoft Windows was forcing countries like his 
native South Africa to spend millions on software licenses, and in 
disappointment at the unwillingness of the commercial Linux distributions to 
embrace the possibilities of the open development model and challenge 
Microsoft for more than a minimal market share, Shuttleworth made it his 
lofty goal to break Microsoft's majority market share of PC operating 
systems. As he later stated in the first bug report to be entered into the Ubuntu 
bug tracking system:

Microsoft has a majority market share in the new desktop PC marketplace. 
This is a bug, which Ubuntu is designed to fix [...] Non-free software is 
holding back innovation in the IT industry, restricting access to IT to a small 
part of the world's population, and limiting the ability of software 
developers to reach their full potential.

Remarkably, this argument was a complete reversal of the Bill Gates' 
statement to the hobbyists 30 years previously. By casting Microsoft's 
monopoly on desktop PC operating systems as a bug to be fixed, Shuttleworth 
defines proprietary software and the related closed model of development as 
means of profit from the bygone pre-Internet, pre-commodity-hardware era, 
which now are active impediments to software innovation. By positioning 
Ubuntu as the solution to this bug, Shuttleworth put the dogmas of the free 
sharing of information at the centre of software innovation, reflecting this in 
choosing the name Ubuntu – an ancient Zulu word meaning “humanity 
towards others” whose associated ideology of shared humanity summed up 
the open model of development of Debian on which he sought to base his 
project and his experiment of software innovation. 
By defining the main goal of the Ubuntu project as breaking Microsoft's 
global dominance on PC operating systems, Shuttleworth touched upon the 
theme of global domination – but unlike Linus Torvalds and the many 
hobbyist hackers who had considered the notion to be only half serious, 
Shuttleworth decided to put a lot of capital and effort into the project. In early 
2004, he contacted 12 free software developers, among them several of the 
most active Debian developers, and brought them together for a meeting in 
London to hire them to work on a completely free (both gratis and libre in an 
attempt to sidestep the open source vs. free software debate) Linux 

37



distribution based on Debian – which at this point was highly regarded and 
widely used among hackers due to its technical quality and openness which to 
no small degree stemmed from its elaborate technical infrastructure.
Breaking with one community to take a project in a new direction, called 
forking, is one of the most significant political actions that can be taken in a 
free software community. Forks usually happen when a free software project 
makes a controversial decision such as making radical design changes or 
changing its license. The developers who disagree with the decision break out 
of the main project to form a new project that builds on the same codebase but 
without the controversial design changes or under the old license.
Well aware of the political significance of a fork, Shuttleworth had realized 
that he couldn't make these changes against the powerful groupings within the 
egalitarian community of Debian which had agreed on an inclusive stance to 
its users, labelling the Debian system the “universal operating system”, thus 
making it untuned to any single user group. Thus he sought to present Ubuntu 
as a derivative of Debian focused on desktop usability to be shipped for free 
across the world at his expense in order to win over Windows desktop users.
Knowing that desktop users want to have the latest software available, 
Shuttleworth decided that Ubuntu should follow a strict time-based release 
cycle dictating that the Ubuntu community must release a new version of the 
Ubuntu system every 6 months - unlike Debian's fairly erratic feature-based 
release cycle of releasing a new version whenever they feel they have made 
enough progress to warrant one (cf. Illustration 4).

38



Shuttleworth found that releasing a new version of a Linux distribution every 
6 months necessitated stricter planning and more intense work than the 
feature-based “we release when we're ready” volunteer mentality of Debian, 
and he sought to accelerate and build upon the open development model of 
Debian by hiring some of the most active Debian hackers to work closely 
together fulltime on the project. They copied the thousands of packages in the 
Debian system into an archive of their own, but since there were so few 
developers, by necessity they were all allowed to modify all of the packages 
of the system, unlike Debian where each package is maintained and owned by 
a single developer and modifying someone else's packages requires asking for 
prior approval. At the beginning of every 6 month release cycle, they would 
merge the latest changes of Debian to minimize the technical differences 
between the two, effectively releasing a specialized and customized version of 
Debian twice a year.

Ubuntu and Canonical
At the time of writing, three years since Shuttleworth first began hiring the 
Debian developers, Ubuntu has seen six releases, and grown to be one of the 
most popular Linux distributions. Using the catchphrase “Linux for Human 
Beings”, Ubuntu has come to be seen as the more user-friendly version of 
Debian, attracting many users and contributors due to its clearly stated 
meritocracy that acknowledges technical and non-technical contributions on 
equal terms (this will be explored further in chapter 6). Shuttleworth sits at 
the centre of this meritocracy in a role similar to that of Linus Torvalds in the 
Linux Kernel project. But Shuttleworth's role as employer, top authority in the 
community governance structure, and sole financer of the project has made 
his leadership much more explicit – a fact that he acknowledges in giving 
himself the humorous on-line moniker SABDFL – an acronym for Self-

39

Illustration 4: The differences in Debian and Ubuntu's release cycles. Both branch off from the  
collection of the latest, volatile upstream free software of Debian Unstable and seek to stabilize  
that into a releasable state.



Appointed Benevolent Dictator-For-Life. By clearly stating this fact, 
Shuttleworth makes no false pretences and soaks up much of the focus on the 
success of Ubuntu which in no small part has been achieved by hiring some 
of the most capable and ambitious Debian developers and leveraging the new 
breakthroughs in free software which they have been part of. This has created 
a fair amount of social friction between the Ubuntu and Debian communities, 
partly because many of the other Debian Developers feel that Ubuntu is 
stealing their thunder, and partly because Ubuntu is diverting resources away 
from a genuine communal project to a project controlled, in effect, by one 
man.
Many of the core Ubuntu developers see Ubuntu as a much needed 
reconfiguration of the social and technical structures of Debian – a kind of 
“Debian 2.0”: a necessary streamlining in order to make free software more 
appealing and accessible in order to challenge the dominant paradigm of 
proprietary, closed-source software.13 They accept that such change would be 
impossible within Debian and as a young project, they use this opportunity to 
continually redefine and refocus the processes of the Ubuntu community to 
better suit their joint enterprise towards world domination.
Similarly, Canonical, the firm through which Shuttleworth employs the core 
Ubuntu developers, seeks to test the limits of the open model of development, 
combining it with traditional closed development model concepts such as 
feature specifications and set release cycles in an attempt to bring about 
change in the way the software industry is run, while hoping to become 
profitable by selling support service contracts on the Ubuntu system – though 
this has yet to happen. As one Canonical employee says with a smile, 
referring to the processes adopted by both Canonical and the Ubuntu 
community, underlining how intertwined the two are: “I don't know if there is 
a 'usually' in anything we do yet.”
The developers employed by Canonical work full-time from their homes, in a 
way symbolising how their hobby has become their job. They only meet for a 
few week-long Ubuntu Developer Summits and development sprints 
sponsored by Canonical which take place at hotels alternately in Europe and 
North America with the odd meeting in Australia. On-line, the Ubuntu 
community has copied most of the Debian modular infrastructure, including 
13 Similarly, Michael Banck, a Debian Developer, calls Ubuntu's development process and 

community structure "the first evolutionary challenge to Debian" (Banck 2005)

40



the use of mailing lists, wikis and IRC channels as their main means of 
communication, where Canonical employees and community volunteers work 
together, since the textual media on-line do not indicate who is paid to work 
on Ubuntu and who is not (and the core Ubuntu developers have decided not 
to publish such lists anywhere, fearing that it would swamp them with user 
requests, undermining the open development model with constant begging for 
new features). 

41



42



43



But Shuttleworth is also seeking to extend that infrastructure with the 
construction of a new web-based collaboration platform for free software 
projects called Launchpad which the Ubuntu community now uses. More than 
half of Canonical's technical employees work on Launchpad (cf. Illustration 
5) which includes a bug tracker, a web-based translation system, and a 

44

Illustration 5: A simplified diagram of the relationship between the  
Debian and Ubuntu communities in relation to Canonical. Mark  
Shuttleworth and the first core Ubuntu developers are located where all  
three fields overlap. The Canonical developers not involved in either  
community are working on Launchpad and other closed development  
projects.



revision control system.14 Through this infrastructure, the core Ubuntu 
developers work side by side with hobbyist contributors all drawn by their 
shared interest in building, maintaining and improving a free software 
operating system for all (especially themselves) to use.

Conclusions
As Ellen Ullman remarked in the quote that opened this chapter, computer 
systems are built like cities, mixing designs, without an overall plan, on top of 
ruins, always learning from and reimplementing old mistakes (Ullman 1995). 
And the Ubuntu system is no exception, being built upon a long, intricate 
“oral” academic hacker tradition derived from Unix through the GNU project 
to Linux and Debian, with hackers continually jousting to improve, shape, 
and keep free their access to the computer both by legal and technical means 
in an interdependent “eco-system” of shared values and code. Since the 
inception of Unix, this tradition has refined and encouraged trust in the user's 
abilities through continuous reinvention, reimplementation and reaffirmation 
of the shared and open source code.
In opposition to this is the closed model of development – the accepted 
industry fashion in which to effectively and profitably produce software 

14  A revision control system allows for the management of multiple revisions of the same 
software so that several people can collaborate and coordinate changes by incrementing 
each revision with a revision number associated with the developer who made the change. 
Shuttleworth's overall goal with Launchpad is to create a technical infrastructure for a 
seamless and automated interaction between upstreams and downstreams, allowing 
downstreams to notify upstreams of bugs and upstreams to respond and fix these, easing 
the exchange of patches in both directions, using revision control to allow for easy 
merging of patches. Such an infrastructure is designed not only to make it very easy to 
make derivative versions of Ubuntu to be customized as they see fit, but also to help 
hackers to avoid fixing the same problems twice by ensuring an automated exchange of 
source code (Hill 2006: 26-27,351-357). As one Ubuntu hacker puts it, “with Launchpad, 
Ubuntu will be like Debian in revision control.”

45



which companies like Microsoft have used to create and win dominance in a 
market based on cheap commodity hardware.
It was only with the rise of the Internet and the success of Linux' open 
development model orchestrated through open on-line collaboration by 
volunteers working from home, building on the value of instantly shared, 
freely modifiable, cumulative improvements to the software, that the old "oral 
tradition" became a viable industry alternative.
Born from the money and ambition of a dot-com IT billionaire and the talent 
and energy of developers and contributors brought together from Debian and 
other free software projects, the Ubuntu system is not only the latest instance 
of a 40-year-old development tradition, it is also the latest convergence of 
those two opposed trends of software development which have been at odds 
since the first personal computers were produced.
By hiring and defining the tasks of the core Ubuntu developers working 
alongside the community contributors in an open model of development, 
which allows all interested parties to contribute and collaborate, Mark 
Shuttleworth has managed to create a hybrid model of development in which 
all development work is openly and freely available, yet the core of the 
Ubuntu system is in practice developed according to the commercial closed 
development model, architected by Mark Shuttleworth and Canonical, a 
company with clear profit motives in selling support for the Ubuntu system. 
This leaves Mark Shuttleworth balancing between a role as a commercial 
industry leader similar to Microsoft's Bill Gates, and a role as a community 
leader such as Richard Stallman. Between the free software dogmatism that 
uncompromisingly seeks freely accessible knowledge for all and the 
pragmatic materialism that seeks profits and the vendor support to make 
Ubuntu and free software sustainable in the commercial market in the long 
run. But through their dedication and enthusiasm, Shuttleworth and the core 

46



Ubuntu developers have matched the individual hopes and 
 users and hobbyist developers with their grand vision: Bringing forth free 
software as an alternative to the dominant proprietary, closed-source, closed-
development paradigm of Microsoft. Or, as the free software hackers 
humorously call their end goal for their joint enterprise: World Domination.

47



Chapter 3

Hacking Synaptic 

– a case study of the Ubuntu hackers' development 
work

The Ubuntu developers work together on-line, exchanging files in order to 
build and maintain the complexity of the Ubuntu system. But though they 
work by themselves, their work is not the clinical work of a lone genius, as is 
often associated with programming, but rather a messy, social practice based 
on the uneven collaboration and sharing of knowledge through digital means. 
In this chapter, I will show how two Ubuntu hackers – one employed by 
Canonical to work on Ubuntu, and one a hobbyist contributor – have come to 
participate in the Ubuntu community, and how they collaborate in the open 
development model of the Ubuntu community on Synaptic, just one out of the 
more than 19.000 software packages within the Ubuntu system.15 Though I 
cannot generalize on the basis of a sociological description of just two of the 
Ubuntu hackers, I seek to use it to offer insight on working practices and 
stories of finding and using Linux which I have found to be quite common 
among the Ubuntu hackers, which in turn can help give a nuanced impression 
of who the Ubuntu developers are. I will draw upon Claude Lévi-Strauss and 
Clark & Chalmers to argue that their shared day-to-day social and technical 
practices are complementary, depending on shared interaction and knowledge, 
as well as the flow afforded by the intimate work with the computer. And that 
this interplay of diverse, yet complementary competences is what binds the 
members of the Ubuntu community of practice together into a social entity 
through what Etienne Wenger calls the mutual engagement (Wenger 1998:73-
77). Finally, I will explore how the Ubuntu hackers socialise and collaborate 

15 Of the 17 hackers I visited and interviewed in detail during my fieldwork, Michael and 
Sebastian were the only developers who were working closely together on the same software 
package, as well as representing different degrees of involvement in the community. The fact  
that they are both German is not directly relevant in this case, perhaps apart from noting that 
close collaboration often occurs among developers who share the same native language.

48



both on-line and in-person, expressing this mutual engagement in chat 
channels, on mailing lists and at free software conferences. 

The Synaptic developers 1: Michael
Michael is one of the core developers of Ubuntu. He is 29 years old and lives 
in a small village in Western Germany. He grew up on the nearby family 
vineyard, and he returned to this area with his wife – his high school 
sweetheart – so that she could work as a physiotherapist in one of the nearby 
villages after Michael finished his MA in Computer Science and began 
working fulltime for Canonical in November 2004– his first fulltime job. 
Michael has been fascinated by computers, experimenting with programming 
and understanding how the hardware and software interacted to produce 
results on the screen since the early 1990s:

I kind of played with it and found it totally interesting to be in complete 
control of this whole computer thing. To understand how it works and 
exactly what it's doing .. I mean exactly what it's doing at the software 
level. [...] I was just eager to try things out and learn. Not afraid of spending 
complete nights on stuff.

As he became more proficient with the computer, he got an Internet 
connection which enabled him to participate in worldwide discussion groups, 
opening up a much wider pool of knowledge on computers and exposing him 
to Linux:

What I mostly liked about Linux, again, was that you are in control. That 
you are able to understand each aspect of the system. There are no secrets.  
In Windows, it's full of secrets. Even if you got really good documentation 
and stuff, at least in my view, you don't have a real chance to understand the 
system. And even if you did, there would be nothing you could do with this 
knowledge. It's just ... 'Okay, now I know how it works, but there's nothing, 
you know, to change, to do... to do with it. So what I really, really found 
interesting with Linux was that it was open and that you had the chance to 
understand it.

49



He fswitched to Linux in 1998 when he began university, and there he met 
other Linux hackers, and he began going to Linux conferences around 
Germany, becoming immersed in the free software communities which led to 
his involvement with Debian:

One of the nice things about Debian was that I was able to contribute back 
to it in a way that was not too hard to do. I mean for Debian, all you had to 
do – “all you had to do” in quotes – was to become a package maintainer 
which just meant downloading new software, which I enjoyed anyway, 
compiling, testing it and uploading it. [...] It was not very hard. I just 
decided that I wanted to contribute some applications that I used anyway, 
so I had to package them anyway...

By 2000, Michael had become a Debian Developer, maintaining several 
Debian packages, including Synaptic, a package management application 
which had been “orphaned” when the upstream developer abandoned it in 
2002:

I maintained "Synaptic" as a package at this time and when I noticed that 
the upstream guy went away [...] I decided that we need such an 
application to make Debian easier to use for people and that I should 
maintain it myself, that I should keep working on it. [...] I just decided to 
start hacking on this thing. And... then I got a working version after a 
couple of days that was better than the last one and looked good enough 
for me so I decided to write this mail to debian-devel [the main Debian 
mailing list] to say 'okay, here's this thing. Please test it if you're interested' 
and, to be honest, there wasn't a lot of response. People were just like 
'Yeah, heh. fine. Do it, go for it. Have fun.'

He initiated a major redesign of original graphical user interface, doing most 
of the work on his own, but constantly asking and receiving feedback and 
testing from other developers. It was this work along with a recommendation 
from then-Debian Project Leader Martin Michlmayr that resulted in Mark 

50



Shuttleworth inviting Michael to London for the first informal Ubuntu 
meeting for a weekend in early 2004. These 12 hand-picked developers, most 
of them involved with Debian, came from all around the world and for many 
of them, this was the first time that they had the opportunity to meet each 
other in person, at least, under more quiet and relaxed circumstances than 
among the hundreds of people that attended the annual Debian conferences. 
During the meeting Shuttleworth outlined his vision for the as yet unnamed 
project, and offered them all jobs on the project which all except one 
accepted. 
Back home, the developers began working together on-line, and though 
Michael spent most of his time writing his thesis, he also spent a lot of his 
spare time working on Synaptic for the first Ubuntu release in October 2004. 
He graduated shortly after the release, and soon afterwards he signed his first 
one-year contract with Canonical to work on package management in 
particular. To Michael, the job is “pretty much what I wanted [...] it's the best 
of all possible worlds” – it allows him to work on free software fulltime, 
having fun with the technical challenges while sharing his results and 
knowledge with his friends and work-mates on-line.

The Synaptic developers 2: Sebastian

51



Sebastian contributes regularly to Ubuntu. He is 28 years old, and lives in his 
native Southern Germany where he is now in the final year of school to 
become a nurse. He already works a lot of shifts as a geriatric nurse when he 
is not doing his courses, and he enjoys his work greatly. 
Sebastian has had access to computers pretty much all his life due to his 
father's job as a software engineer at a big engineering firm. But though he 
soon grasped the principles of programming and became proficient with the 
computer, his interest did not move towards the deeper, technical aspects of 
the computer, but rather towards the excitement at the possibilities of new 
technology, and the challenge of learning to use a new system. "It's basically 
about hearing about new stuff and trying it out" he says.
After experimenting with different versions of Microsoft Windows and 
various other operating systems – both free and proprietary – he happened 
upon Debian in 2002 which he soon became quite proficient with, learning by 
exploring and fixing things on his own system, and helping others with tricky 
and interesting issues on the German Debian users' web forums. Based on 
these experiences, he wrote a fair bit of translation and documentation to 
make Debian more accessible to German users. One of the packages he 
worked on was Synaptic where he collaborated a bit with Michael. Though he 
spent much time contributing to the project on-line, Sebastian never met with 

52



anyone in the Debian community. His impression was that it was “a quite 
closed community – most often, Debian developers only will work with other 
Debian Developers,” and his contributions were mostly individual efforts with 
little direct collaboration.
So in May 2005, Sebastian decided to sever his links to the on-line 
communities he had joined. He closed his web forum accounts and 
unsubscribed from the mailing-lists that he had joined. He filled the gap with 
his new job as a nurse, and with lots of sports – running, swimming and 
bicycling – his favourite hobby, as he humourously notes: “I have more 
bicycles than I have computers.”
But when he tried out Ubuntu in January 2006, he soon filed a bug regarding 
some usability issues in another of Michael's package management projects, 
and the two soon began working together on Synaptic as well. His main 
reason for contributing to Ubuntu is simple: “It was winter, so I couldn't do 
sports.”
Sebastian says that contributing to Ubuntu is a good way to balance the 
different sides of his personality: The empathic and social aspects of working 
as a nurse on one side, and the cognitive, learning experiences with the 
computer which lets him “find relaxation through coding,” programming and 
writing patches to Michael's projects, scratching the itches and annoyances he 

53



finds in the interfaces, seeking to resolve the kind of issues he knows that 
many users have had in Debian. He considers himself lucky that Michael is so 
receptive to his ideas since if he wasn’t, there really wasn't much Sebastian 
could have done since he doesn't have the technical privileges to upload his 
changes himself (I will discuss these technical privileges further in chapter 6).

Though both Michael and Sebastian are involved in Ubuntu, their level of 
commitment, programming skills, working conditions, prior experiences with 
the free software communities and incentives for contributing specifically to 
Ubuntu differ enormously. Michael is a long-time developer who has become 
employed to work on what was his hobby, while Sebastian is a long-time user 
who has found a new, challenging aspect of his interest in computers by 
learning to program and contribute to his operating system of choice. As I 
remarked in chapter 2, it is through these individual histories of discovering 
and learning about Linux that the Ubuntu hackers have come into their shared 
community of practice. And it is through the continued learning and 
experience in their shared practices that they maintain their membership. But 
in order to gain a better understanding of the shared practices of Michael and 
Sebastian, we need to know a little bit more about what Synaptic is and how it 

54



has been developed.

Collaborating on-line on Synaptic
Synaptic is a graphical package management tool used for the upgrading, 
installation and removal of software packages on Ubuntu and other Debian-
based systems. Since all of the free software available in Debian-based 
systems are packaged in modular Debian software packages, package 
management tools such as Synaptic are essential to maintain, update and 

55



expand such a system as they provide the user interface to the database of all 
available software in the on-line archives from where the latest versions can 
be downloaded for smooth installation or upgradal without the user having to 
download and compile the source code themselves. 
Synaptic was originally developed by the Brazilian developer Alfredo Fujima 
for the Debian-based Linux distribution Conectiva, based on the Advanced 
Packaging Tool (or APT for short) which is used from the command line. 
The command line is a legacy from the days when computers didn't write 
their responses on screens but on teletypes – a kind of typewriter unto which 
you could type commands, and when you hit “enter” the computer would 
react and the teletype would print the computer's responses on the paper.16 The 
command line is a digital representation of the same command-response 
interface used by the teletype, and until graphical user interfaces were 
popularized by the Macintosh in 1984, all interaction with computer happened 
through the command line. Even though graphical user interfaces now are 
commonplace, many hackers still prefer to use the command line as it offers a 
more direct and technically transparent interaction with the computer since it  
uses the same kind of textual input and output as they use to program, 
enabling them to see the exact messages offered by the object code, whereas 
the graphical user interfaces require another level of graphical abstraction to 
be programmed on top of the textual input. 
Thus APT and Synaptic offers two completely different modes of interaction 
to make the computer perform the same actions. Where installing the software 
package “foo” through APT would require typing the command “apt-get 
install foo”, Synaptic is built on top of this concept to allow installation by 
pointing

16 Unix was originally designed for use with teletypes, and all of the Unix tools were 
commands to be entered on the command line. These commands were necessarily short 
with two-, three- or four-letter names such as cp, cat and grep as typing them took time 
on the slow teletypes.

56



57



and clicking on the package “foo” with the mouse, making package 
installation much easier for less experienced computer users (cf. Illustration 
6).
When Alfredo Fujima left Conectiva in 2002, he abandoned Synaptic in the 
process. Soon afterwards, Michael took over the project in a fashion typical of 
free software projects which Scott, another core Ubuntu developer, describes 
quite precisely:

You've picked a package that is, for all intents and purposes, abandoned by 
anyone who previously cared about it. This happens from time to time, and 
is a side-effect of the mostly volunteer nature of Open Source development, 
people move on. However this is also one of its strengths ... the package 
may not be being maintained by the previous owner, but now the time is 
ripe for somebody else to come along, pick it up, and take it over 
themselves! [...] What kind of person would do this? Well, the kind of 
person who clearly uses it sufficiently to be finding bugs; and with the 
developer skills to be able to fix both bugs and write patches for them.

Since the source code of Synaptic is licensed under the GPL, Michael was 
legally allowed to modify and redistribute it as he pleased, and since there 
was nobody else to collaborate with, Michael found himself in the position 
Scott describes, having the skills and the motivation to work on it. He took on 
the double role of being the developer upstream and the packager downstream 
in Debian, hacking on it in his spare time while at university. But as he 
improved it and uploaded new versions of it, he also inherited the hackers 
who used Synaptic in Debian, and who were directly affected by his work 
when they installed the new version of the package, and who tested it and 
reported bugs, who complained when his hacking broke old features and who 
sent in patches, translations and suggestions with improvements. One of these 
hackers was Sebastian who eventually came to continue their collaboration on 
the Ubuntu system.

The complementary elements of hacking
Working on Ubuntu, Michael generally spends most of his time working on 
package management applications such as APT and Synaptic. Most of his 
work is shaped either by features or by bugs.
Features are new capabilities to be built into the Ubuntu system and the 

58



applications that are shipped with it. These features are typically discussed 
and drafted at the biannual Ubuntu Developer Summits before being 
approved by the Ubuntu Technical Board – the governance entity with the 
overall responsibility for defining the technical direction of the Ubuntu 
system, led by Mark Shuttleworth and Canonical CTO Matt Zimmerman, 
formally the chief engineer of Ubuntu. When the first version of Ubuntu was 
released, Synaptic was chosen as the easiest interface for new Linux desktop 
users to get to grips with the Debian package infrastructure, since it allowed 
them to install additional programs without using the command line, and at 
Shuttleworth's request, Michael has spent a lot of time developing Synaptic 
and other graphical package elements to make that infrastructure even easier 
to grasp. 
When developing, Michael discusses each feature as a problem to be solved 
with the other developers on IRC, getting ideas and hearing opinions, drafting 
solutions and finding out any structural prerequisites, and coordinating efforts 
before beginning the actual implementation. Since Sebastian is one of the few 
others with an intimate knowledge of the Synaptic source code, it is often 
with him that Michael discusses these matters, and depending on Sebastian's 
own interests, he may help develop the code, using the revision control 
system to suggest alternative paths and ideas which Michael can merge with 
his own code.
Bugs are issues or design errors in the existing code which may produce 
hiccups or crashes when tested or used. You can only test whether a program 
works by compiling it, thereby turning it into an opaque blob of binary code, 
and running it. Thus, a central part of programming is testing the compiled 
program and noting down any discrepancies between how it is specified to 
work, and how it actually works. Such discrepancies are usually bugs to be 
fixed in the source code – which in turn must be compiled again in order to be 
tested. Therefore, every time they release a new version of Synaptic, usually 
including a new feature which in turn may introduce new bugs, Michael and 
Sebastian call for users to test the new version and report any bugs they find 
in the Ubuntu bug tracker. Reporting a bug involves writing a description of 
how to reproduce the bug so that Michael and Sebastian can test the bug on 
their own systems as they work to narrow down which part of the source code 
might be at fault in order to fix the bug. 

59



Sebastian does a fair bit of bug triage on Ubuntu's package management 
tools: reading and replying to reports, marking bugs describing the same issue 
as duplicates, reassigning bugs that are related to other software packages, 
exchanging opinions and solutions based on their knowledge of the structure 
and style of the source code, and querying the bug reporter for more 
information on how to reproduce the bug or under which circumstances the 
bug occurred which can be gathered by looking at the cryptic spatterings of 
text, called logs, traces or dumps, which the program leaves behind when it 
dies. Sometimes these queries result in continuing conversations with the bug 
reporters as he and Michael try out various solutions in their attempt to locate 
and fix the bug. 

This duality within the practice of hacking between building new and 
maintaining the old has striking similarities to Claude Lévi-Strauss' famous 
dichotomy of the engineer and the bricoleur (Lévi-Strauss 1994). Where the 
engineer solves specific problems with specific tools designed for that 
purpose to build and extend new features, the bricoleur is a tinkerer, using all 
means at hand to find a solution, but only to maintain and stabilize the 
inherently unstable collected remnants of already existing human work 
(which Lévi-Strauss calls “idea treasure”, borrowing a term from Mauss and 
Hubert) (Ibid. 27-30). 
For hackers, the feature-based collaboration is the work of engineers, 
following plans to implement clear solutions, while the bug-based 
collaboration is the work of bricoleurs, constantly fussing and fretting, 
searching out answers based on circumstantial evidence like a hunter tracking 
an animal.17

But these two aspects of hacking transcends Lévi-Strauss' dichotomous 
definition of the engineer as they are not so much sharply opposed 
distinctions as they are complementary parts of the same practice – much like 
how a doctor both manages the idealized healthy human body according to a 
deductive anatomical model and medicinal theory, and bases his diagnosis on 
recognizable symptoms and circumstantial evidence gathered according to an 

17 Indeed, computer folklore has it that the very first bug to be found was in fact an actual 
insect which had lodged itself within the machinery of one of the earliest digital 
computers.

60



inductive, semiotic model supported by his personal, empathic experience; 
treating the patient according to both, whilst also consulting other doctors or 
experts, only later to find out whether his diagnosis and treatment was correct 
and not the cause of further malady.18

Thus, the daily hacking practices of Ubuntu hackers such as Michael and 
Sebastian is not the work of lone engineers, but rather a complex interplay 
between two complementary elements of hacking which are maintained 
through social interaction both on-line on mailing lists and IRC and in-person 
at conferences and summits. These complementary practices are what Etienne 
Wenger’s calls the mutual engagement that defines a community of practice 
(Wenger 1998:73). As this mutual engagement depends on the members’ 
diverse engagements and overlapping competences in a shared practice which 
I contend is at play here.
In the last part of this chapter, I will show how the Ubuntu hackers’ mutual 
engagement is similarly clearly reflected in the way they use the Ubuntu 
system to arrange their work environment at home and at conferences and the 
way they interact with one another both on-line and in-person.

Deep hack mode and asynchronous sociality
As described above, the Ubuntu hackers work at home, and accordingly, they 
prioritize having a separate work room in order to be able to shut the door to 
the home around them and focus on their work. As when Ubuntu hacker Colin 
went house-hunting with his wife and son, having his own study was “non-
negotiable.” Hackers tend to demand calm around themselves, arguing that 
their work, especially writing entirely new pieces of code, requires intense 
18 The Italian micro-historian Carlo Ginzburg argues that the deductive and inductive 

practices of modern science are based in two fundamental semiotic paradigms: The 
stringent Galilean paradigm focused on universal reproducibility and abstract deduction, 
and the elastic Evidence paradigm (“paradigmo indizario”) focused on the interpretative 
and inductive, personal gathering of signs (Ginzburg 1986). He argues that the Evidence 
paradigm, dating back to the practices of hunter gatherers, hasn't been recognized for its 
role in modern science which is generally attributed to the dominant Galilean paradigm, 
much like a mule only recognizes the horse as its parent. Similarly, computer 
programming is often considered to be a completely deductive practice of clean 
mathematical abstractions, though it is equally a feverish hunt for the remaining bugs, 
inductively tracking them down and removing them.

61



concentration made impossible by external disturbance.
Ubuntu hacker Paul describes how under the right circumstances, hacking can 
put him “in the zone” – a state of uninterrupted concentration where he loses 
himself from the outside world, focusing solely on the computer to the point 
where the interaction with the computer happens effortlessly, allowing him to 
immerse himself in the code to the point where "You don't need to think about 
the variable names19, they will just appear in your mind when you need them." 
Many hackers refer to this state of deep concentration as “Deep Hack Mode” 
(cf. Coleman 2005:231) – a term defined in the on-line compendium of 
hacker slang known as the Jargon File as “a Zen-like state of total focus on 
The Problem that may be achieved when one is hacking,” and it is very 
similar to what the American psychologist Mihali Csikszentmihalyi calls 
flow: “the state in which people are so involved in an activity that nothing 
else seems to matter” (Csikszentmihalyi 2002:4). It is worth noting how such 
diverse activities as programming, playing computer games or writing essays 
all depend on the computer's continuous feedback and need for interaction, its 
minimal requirement of physical exertion, and its huge mindful potential to 
induce and maintain the flow state for hours on end. The flow state requires 
complete concentration and control, pooling all your attention in a tunnel-like 
vision focused on the screen, making you willfully unaware of your 
surroundings, including the physical actions you perform to interact with the 
computer, empowering and guiding you only towards the work on the screen. 
This interaction with the computer is similar to the American philosophers 
Clark & Chalmers' notion of “active externalism” through which they argue 
that certain mental tasks depend on physical objects to be solved efficiently. 
They give the example of the letter tiles in a Scrabble game where we depend 
on physically moving the tiles in order to win new perspectives on the 
possible words to be spelled rather than on some internal process on our own. 
Thus, “the re-arrangement of tiles on the tray is not part of action; it is part of 
thought.” (Clark & Chalmers 1998:7; emphasis original). In this way, the 
computer and the system through which it works becomes an extension of the 
hacker's mind, it is only through constant, uninterrupted interaction and focus 
on the computer that he can solve the task at hand. Such technical intimacy 
usually affords only one user, and as Paul explains, any outside interruptions 

19 Variables, in software code, are containers, used to temporarily hold some type of data.

62



will give him a jolt, breaking all of the mental connections and surplus 
afforded by the flow state. The Jargon File describes how the importance of 
not being interrupted is deeply engrained in hacker etiquette: 

... if someone appears at your door, it is perfectly okay to hold up a hand 
(without turning one's eyes away from the screen) to avoid being 
interrupted. One may read, type, and interact with the computer for quite 
some time before further acknowledging the other's presence (of course, 
he or she is reciprocally free to leave without a word). The understanding 
is that you might be in hack mode with a lot of delicate state in your 
head, and you dare not swap that context out until you have reached a 
good point to pause.

I experienced this several times in my visits and interviews with Ubuntu 
hackers, whose partners and friends over time have come to allow room for 
and be forgiving of these programming-related eccentricities. In turn, the 
hackers themselves often take care to balance their time on the computer in 
relation to their family's needs, when they reach one of those “good points to 
pause.”
I have found that this duality is also very characteristic for the way that 
hackers interact with each other on-line where you can't assume that people 
are communicative at any given moment. As Ellen Ullman points out, this 
inability to be interrupted makes hackers somewhat asynchronous to one 
another – at least in the short term (Ullman 1995:132). This is reflected 
clearly by the fact that all of the Ubuntu hackers' preferred on-line 
communicative means are textual and thus – at least to some extent – 
asynchronous. Email, newsgroups and web forums postings and bug tracker 
comments are all based on users reading and replying asynchronously. Even 
real time communications such as IRC chat channels and Instant Messaging 
bend to this rule as developers “ping” each other, and if there's no immediate 
response, they can ask their question and let the other answer when he has 
time or attention to spare:

...
09:00 carlos pitti: ping 
[...] 
09:07 pitti carlos: pong 
09:08 carlos pitti: I did a mistake yesterday night and latest 

Edgy export has the plural form bug (bug 

63



#2322) 
09:08 Ubugtu Malone bug 2322 in rosetta "Truncated plural 

forms" [Critical,In progress] 
http://launchpad.net/bugs/2322 

09:09 carlos pitti: I'm exporting a new version with that 
fixed, but it would take around 2-3 hours 
09:09 carlos am I late to have it in the prerelease version? 
09:09 pitti carlos: ah, then I'll rebuild the edgy packs this 

afternoon 
09:09 pitti carlos: it won't go into RC anyway 
09:09 carlos ok 
09:09 pitti carlos: the plan is to upload the final packs 

tomorrow 
09:10 pitti carlos: thus I'd like to have today's in perfect 

shape 
09:10 carlos I see 
09:10 carlos ok 
09:10 carlos pitti: I will ping you when the new version is 

available

Here, Carlos needs to notify Pitti of a new bug which he needs to take into 
consideration when building a group of packages for upload. Since Pitti is 
busy, the conversation doesn't continue until Pitti is able to respond and they 
can coordinate their work. Most of the Ubuntu hackers' day-to-day interaction 
takes place on IRC where they can pick up on interesting discussions and be 
available if someone needs to ask a question. The hackers deftly navigate 
back and forth between conversations, fluidly participating as the IRC client 
automatically notifies them when someone “pings” them or even just 
mentions their on-line moniker. And even if they miss something, they can 
always go back to check the chat logs or mail archives as all interactions 
within the community are recorded and publically archived on-line. At times, 
IRC is such an easy and non-intrusive way of quick communication that it 
supersedes conversation even when developers are in the same room. Mark 
Shuttleworth enjoys relating the story of how he went out to buy beer during 
one of the first gatherings of the core Ubuntu developers at his London flat. 
When he came back he found 18 hackers sitting in his living room, working 
in silence, exchanging textual information on IRC.20 This anecdote illustrates 

20 I saw the same trend again and again at conferences, one time even witnessing two 

64



how the work environment provided by the system takes precedence over 
face-to-face discussions simply to avoid breaking the flow state afforded by 
the computer.21 

Socialising on-line
Although this mode of working seems highly individual, there is a constant 
flurry of interaction taking place through the computer. Each developer 
attends IRC channels and subscribes to mailing lists reflecting their different 
interests around the community. Most of these discussions are essentially long 
question and answer sessions, as hackers turn to fellow hackers as well as 
manuals, web searches and documentation to find the answers necessary to 
retain their mastery of the computer. Each upstream project has its own 
mailing lists and IRC channels, as well as the Ubuntu community itself which 
is sub-divided into smaller groups based on interest, centered around a shared 
IRC channel. Typically, an Ubuntu hacker is subscribed to between 10 and 30 
mailing lists, logged on to up to 15 different IRC channels, and also receive 
mail notifications about the latest changes to the system and new bugs and 
comments on bugs from Launchpad to the software projects that they're 
working on, and read blog updates on the Planet Ubuntu webpage.
With all these emails, chat conversations and bug reports constantly requiring 

hackers quietly sitting in opposite ends of a conference room, having a furious argument 
on IRC about who should be responsible for fixing a troublesome piece of software, and it 
didn't end until one of them looked up and saw the other hacker sitting at the far end of 
room and contentiously shouted: “Stop being such an arsehole!” 

21 This asynchronous sociality is not only a norm well suited to hackers' mode of 
collaboration, but it is at times also a necessity as the Ubuntu hackers are spread across 
the multiple time zones, mostly in North America, Europe and Australia, making 
exchanges such as this common: 

15:56 mdz good evening
15:57 zul afternoon
15:58 ajmitch morning
15:58 mdz good UTEvening

It is easy to forget that the Ubuntu community spans the entire globe, since it mostly 
becomes an issue when it comes to finding IRC meeting hours that fit all members of the 
community, and meetings typically rotate between being early morning, late afternoon, or 
late evening to accommodate as many time zones as possible.

65



attention, the computer easily becomes a source of constant distraction. 
Digital theorist Linda Stone has uses the term “Continuous Partial Attention” 
to describe the stance of keeping one item in focus while constantly scanning 
the periphery for something more interesting or relevant, being ready to synch 
with that item instead (Stone 2006). This continuous scanning state of 
constant readiness for interruption appears to be directly opposed to the 
uninterruptible flow state, yet the Ubuntu hackers are extremely apt at 
filtering, handling, and prioritising the large amounts of computer-mediated 
information that pass before them every day.
As media theorists Geert Lovink and Ned Rossiter have noted, on-line life is 
defined by passive consumption of information, as it would be impossible to 
relate and reply to all the information that passes by (Lovink & Rossiter 
2005). This can literally be seen in the mailing lists and the IRC channels 
which the individual Ubuntu hackers subscribe to. Most of these they are 
interested in, but not so deeply so as to participate actively and regularly – 
unless a topic comes up which they care deeply about. Instead, they spend 
most of their time and energy on relatively few mailing lists and IRC 
channels, where they participate much more actively as they are well 
acquainted with the people there, and where they contribute with most of the 
discussion, joking and socialising to which others can relate passively. As 
Chris Kelty remarks, “people are not always in the public, but they are always 
ready to be” (Kelty 2005a:200).

66



Hackers' on-line sociality is defined by how they use the computer to 
“effectively filter out the noise from the signal” as a recurring hacker 
metaphor goes. This duality between focusing intensely on your work and 
constantly scanning the periphery for new information to relate to, is summed 
up quite nicely by the way Ubuntu hacker Martin has organized his 
workspace (cf. illustration 7): He has set up two IRC clients monitoring the 
channels he is most interested in, and on top of them, he has placed his main 
tool, the command line terminal (which will be explored further in chapter 5), 
in such a way that the last 10 lines of conversation are displayed from the IRC 
clients, allowing him effortless participation in the constant flow of 

67

Illustration 7: A typical Ubuntu hacker's main work space. With the command line dominant over the  
constant textual chatter of the community.



community chatter as part of his work on the Ubuntu system. In this way, the 
hacker's continuous flow of interaction with the computer comes to the point 
where the system becomes an extension of his mind. It is through this “active 
externalism,” as Clark & Chalmers have defined it, that the individual hacker 
finds the flow afforded by the computer allowing him to incorporate the 
interaction with the system he continues to build with the effortless on-line 
sociality with his peers. It is in this complementary flow that the Ubuntu 
hacker enters the mutual engagement of the shared community of practice.

Free software conferences: Meeting in-person
But even though, or perhaps exactly because, the Ubuntu hackers spend so 
much time communicating through their computers, they relish the 
opportunity to meet in-person. The biannual Ubuntu Developer Summits are 
where the Ubuntu hackers convene to plan out the coming development cycle 
of Ubuntu, and socialise with the physical rapport not afforded by the on-line 
textual means. I find, as the American anthropologist Annette Markham has 
concluded on her experiences on IRC, that on-line and in-person are two 
perspectives of the same reality that needs to be accepted on equal terms, even 
if they aren't experienced as such (Markham 1998:211-212). The two 
perspectives differ solely in the means and tools through which they socialize. 
Just as an in-person meeting has different strengths and weaknesses in the 
audial and visual clues which can both guide and distract, on-line 
communications have similar strengths and weaknesses to which the Ubuntu 
hackers strain their attention in an attempt to adapt.22

The first day of the summit is characterized by general feeling of reunion, not 
only meeting old friends, but also meeting people that you have only 
corresponded with on-line, but wouldn't recognize in person and the people 
who were here for the same reasons as you, but whom you didn't know yet. 
During the conference the hackers wear themselves down with sleep 

22 Though the hackers thoroughly enjoy the intense, social interaction of the conferences, 
not all hackers are equally well accustomed to dealing with in-person situations compared 
to their usual on-line interaction. This is demonstrated quite clearly by Ubuntu hacker 
Tollef's observation on his personal weblog following the Ubuntu Summit in Mountain 
View: “Showering is not optional when you interact with other people. Seriously, some 
people didn't just smell a bit, they stunk. Eww.” It is worth noting how Tollef himself 
reserved this observation to be expressed on-line, in a way gently perpetuating this divide.

68



deprivation and cumulative hangover in order to fit as much socialising and 
shared hacking as possible into a single week. Much of this takes the form of 
Birds of a Feather discussions where hackers discuss new features upon 
which the Technical Board plan out the coming releases and feature goals (as 
discussed above, also cf. illustration 8). All of this intense social interaction 
reaffirms and re-energizes the hacker's shared interest in the project. For 
Sebastian, for instance, attending the Ubuntu Summit in Paris not only gave 
him an opportunity to meet Michael in-person after three years of on-line 
collaboration, which gave their friendship a new dimension of shared in-
person experiences, but it also offered him the opportunity to meet other 
Ubuntu contributors whom he hadn't interacted with on-line, and with whom 
he began collaborating and discussing his work following the conference. 
These in-person meetings gave Sebastian a much wider active and personal 
exposure to the Ubuntu community than he could have had through the 
passive consumption on-line. He wasn't just ready to be in the public of the 
Ubuntu community – he was there, in-person, for the whole week. Thus the 
in-person meetings helped define new social relations for Sebastian to 
augment through the daily interaction and collaboration on-line.

69



In this way, hacker conferences are, as the American anthropologist Gabriella 
Coleman puts it, “the quintessential hacker vacation” (Coleman 2005:312) – 
as it combines the shared fun of hacking with the social interaction (enhanced 
by the social lubricants such as alcohol and shared accomodations) with 
others who share their interest and passion for free software, thereby offering 
the hackers new ideas and inspiration and motivation to contribute to the 

70

Illustration 8: A typical Birds of a Feather session – or BOF for short. A BOF is a staple unit  
of discussion at hacker conferences, based on the idea that “birds of a feather flock  
together”, these are informal discussions where hackers with shared technical interests get  
together to share ideas on a certain topic.



project.
Mark Shuttleworth and Canonical are very aware of the conferences' 
stabilising function on the continued work of the Ubuntu community, and they 
use the biannual conferences as occasions to sponsor both hobbyist 
contributors (such as Sebastian) and developers from various upstream 
projects to participate in the conferences so that these developers can offer 
their technical expertise and build social in-person relationships with the 
Ubuntu developers in order to help future collaboration.23 
Thus, on-line and in-person social interaction complement each other much 
like the Ubuntu hackers' bug fixing and feature development work does. 
Rather than being completely distinct spheres of reality, the asynchronous on-
line interactions which affords the intense flow central to working with 
computer and the direct, synchronous, in-person interactions at conferences 
which affords deeper discussion and physical rapport are complementary 
parts to the mutual engagement of the Ubuntu hackers.

Conclusions
This chapter has asked, ‘who are the Ubuntu hackers and how do they 
collaborate?’  
Through a sociological case study of two Ubuntu hackers, Michael and 
Sebastian, I have tried to show how differently the Ubuntu hackers live and 
work away from the computer, and how this affects their presence on-line. 
One is a full-time developer fully integrated in the free software communities 
on-line, and the other finds contributing to Ubuntu a relaxing hobby that has 
given him a group of new friends both on-line and in-person. The case of 
Synaptic shows how the hacking practices within the open development 
model of the Ubuntu community are fundamentally social, as the Ubuntu 
hackers take over and collaborate through a complementary practice between 
what Lévi-Strauss calls engineer work and bricolage: Both visualising and 
designing new features as well as redesigning and reimplementing odd bits of 
left-behind work to fit their needs through a haphazard extending, fixing, 

23 Even so, it is only a fairly small number of Ubuntu hackers who gather at any given 
Ubuntu Developer Summit. Apart from the around 25 hackers paid by Canonical to work 
full-time on Ubuntu, Canonical sponsors around 40 community contributors and upstream 
developers to participate at any given summit, and though they encourage other interested 
developers to join in, few can find the time and money to do so on their own.

71



fussing and testing. All of this combined in an openly social practice where 
they constantly rely on the knowledge of other hackers. Thus, much like the 
American computer scientist Gerald Weinberg who argued, more than 35 
years ago, that most programmers spend more than two thirds of their time 
working with other people rather than working alone (Weinberg 1971: 35), I 
claim that the practices of the Ubuntu hackers fit with the Etienne Wengers’ 
notion of mutual engagement in a shared community of practice. Where 
diverse competences produced through shared histories of learning 
complement and overlap both through on-line discussions on IRC and mailing 
lists characterized by a constant asking and answering of technical questions, 
and passing assignments  and suggestions from one to another on how to best 
negotiate features and bugs in the software incorporated effortlessly into the 
work with the computer as an extension of the hacker’s mind, as suggested by 
Clark & Chalmers; and through in-person discussions at conferences to 
decide the overall direction of the next release of the system and build the 
social relations which tie the community together.

72



Chapter 4

Learning more than mastery

- the diverse motivations of the Ubuntu hackers

Though the central characteristic of the Ubuntu community is the shared 
interest in Ubuntu as a free software operating system, with all the technical 
and social opportunities for mastering and sharing knowledge of the computer 
that is contained in its use and development, each contributor to Ubuntu 
comes to the project with their own motivations, interest, and goals. 
Participation in free software projects has been expounded in what I have 
previously referred to as the second-order writings of “hacker culture” 
commonly as motivated mainly by a “hacker ethic” driven by a desire for 
mastery of the computer which, when artfully exposed through hacking, 
showcases the hacker’s ability for others to judge and appreciate. In this 
chapter, I will first present the aesthetical values represented by within this 
notion of a “hacker ethic” in order to nuance it through Alfred Gell's theory 
that a given artefact mediates social relations between the creator and the 
spectator based on the spectator's attitude towards the technical process 
through which the artefact was created (Gell 1999:172). Following this, I will 
examine how the developers behind three different software packages in 
Ubuntu relate to their code and imbue it with different aesthetic values which 
in turn shape their relationship with their co-developers and express their 
different motivations for writing and contributing that code to the project.
I argue that the three main motivations of the Ubuntu hackers are primarily 
social and that the learning of mastery of the computer and the development 
of the Ubuntu system in turn is the all-encompassing means to fulfil three 
main social motivations: to prove their ability through technical elegance, to  
socialize by sharing a technical challenge, and to fulfil a personal ethical 
commitment by writing software to help others. Further, I will claim that 

73



though all of these diverse motivations are centered on the intimate shared 
history of learning the intricacies of the computer, they do conflict from time 
to time, and that it is by negotiating these motivations that the Ubuntu hackers 
continuously define their concrete joint enterprise (Wenger 1998:77-82) in 
the face of their overall goal of world domination.

Hacking as an art
From its inception, the computer was called “the universal machine” due to its 
ability to dynamically simulate any other medium – including new media 
such as interactive communications and simulations (Kay 1984) – by 
programming the rules and algorithms appropriate for that medium into the 
computer. Because of this, the computer has become a metonym for 
technology as it has been adapted as a central tool for all manner of sciences 
and arts. Programming the computer is a practice characterized by the 
exquisite duality of being an abstract and conceptual exercise while at the 
same time being capable of producing remarkably concrete results (cf. 
Coleman 2005: 233). As seminal hacker Fred Brooks describes it:

The programmer, like the poet, works only slightly removed from pure 
thought-stuff. He builds his castles in the air, from air, creating by exertion 
of the imagination. Few media of creation are so flexible, so easy to polish 
and rework, so readily capable of realizing grand conceptual structures.
(Brooks 1995)

Brooks presents the practice of programming as something akin to an art, 
writing, building the “pure thought-stuff” of rules and algorithms to produce 
far-reaching real life results from missile targeting to money transfers.24 But to 
hackers, the computer does not just simulate or improve other media, it is a 
medium of expression, a craft in its own right that can be used to create 
something entirely new. As one of Gabriella Coleman's Debian informants 
describes it (Coleman 2005: 233, footnote 11):

I think it can be art, but it is not always... If I had to pick a comparison, I 

24 Brooks argues that collaborative programming work should be perfomed much like a 
surgical team during surgery with one surgeon performing the most critical work himself 
while directing his team to assist with less critical parts, thus maintaining one coherent 
vision for the development of the code.

74



would pick carpentry because carpentry always has that range. You can start  
with just making a bookcase or something utilitarian all the way to creating 
something like creating a piece of art with wood.

In this way, hackers perceive programming as a craft spanning from the trivial 
to the momentous. Just as humming a melody or scribbling a shopping list are 
instances of practices that can be elevated into fine arts when performed under 
the right circumstances, hacking spans from trivial, "dirty" hacks such as 
changing the colour of text editor background (cf. Coleman 2005: 237-238) to 
majestic hacks such as writing a whole operating system like Unix, the source 
code of which not only has been read and appreciated in university class 
rooms, but also has attracted a volume of annotated comments (cf. Black 
2002: 119-131). 
What separates these works are not only their scope, but also the elegance 
with which they are implemented. This aesthetic of elegance is often 
described as a balance between the design of the code and the function it 
performs similar to the way mathematical proofs express hugely complicated 
abstract terms in a concise, yet precise representation. In this way, hackers 
often consider computer programs as applied mathematics: Their elegance 
comes not only from fulfiling its function as well as possible, it should also be 
correct and precise to read. This has made hackers draw comparisons between 
programming and a wide range of the fine arts,  including literature (Knuth 
1974, Black 2002), painting (Graham 2004), and music (Kay 1984, 
Hofstadter 1979) where the infusion of complexity, function, and beauty 
traditionally has been considered art.25

But whereas programming is the act of instructing the computer to perform a 
task, hacking is the playfully clever exploration of and experimentation with 
computers to master every intricate detail of the system, the computing 
equivalent of musical jamming. Hacking is, as the renowned hacker Richard 
Stallman puts it, "playfully doing something difficult, whether useful or not" 

25  A good example of how closely mathematics and elegant computer functions are related 
can be found in anthropologist Christopher Kelty's dissection of the Unix and Linux 
command line tool, grep (Kelty 2006). For a fuller discussion on how programming 
languages and more traditional notions of artistic beauty can be combined, see Black 
(2002) or Ratto (2003:38-45). Practical examples can be found in the programming genre 
called Perl Poetry, for more on this, see http://www.perlmonks.org/index.pl?node=Perl
%20Poetry.

75

http://www.perlmonks.org/index.pl?node=Perl%20Poetry
http://www.perlmonks.org/index.pl?node=Perl%20Poetry


(Stallman 2002). Similarly, hacker and self-proclaimed “internet activist” 
Patrice Riemens compares the explorative, creative element of hacking to the 
formula "l'art pour l'art' (art for art's sake), arguing that "hackers are focused 
on the pursuit of knowledge and the exercise of curiosity for its own sake" 
(Riemens 2002).26

This is the essence of what journalist Stephen Levy called the “hacker ethic” 
in his seminal book on early hackerdom27: a collection of ethical notions that 
hackers seem to have in common: Boundless technical curiosity, desire to take 
apart and master new technology and share your knowledge, belief that it is 
possible to create works of art and beauty on a computer (and that these can 
change your life for the better) and a meritocratic notion that hackers should 
be judged only on the quality of their hacking, rather than any other criteria 
such as age, academic degree or position (Levy 1994: 39-49). In this way, 
hacking is seen by hackers reflecting on their craft as a fundamentally 
individual act of winning mastery of the computer, perceiving it as a 
playground that can be explored, and through which they can create and 
express themselves in that abstract space as a carpenter would a piece of 
wood. It is especially the results of hacking which is to be shared, to show off 
their ability in the elegance of their code for other hackers to appreciate with 
the computer as the final and impartial judge,28 rather than the process itself.
I contend that the above generalized ethos of the practice and motivations of 
hacking as an art is too simple a model to explain the motivations of the 
Ubuntu hackers. I argue that the mutual engagement explored in chapter 3 is 
central to the motivations of the hackers working on Ubuntu, depending on 
what they want to achieve with through their mastery of the computer.

Social values infused in the code

26 This notion is typically echoed among hackers as an explanation for “reinventing the 
wheel” by writing new software which essentially performs the same functions – perhaps 
because they find that it was implemented in the wrong language, because there are better, 
more aesthetically pleasing ways of achieving the same results, or simply just for the fun 
of learning about the machine themselves (cf. Coleman 2005:229, Raymond 2004:376)).

27 Levy's book, called “Hackers: Heroes of the Computer Revolution” and first published in 
1984, played a big part in spreading and glorifying the concept of a shared hacker culture 
among the hackers themselves.

28 Eric Raymond also supports this interpretation of hacking in his essay “Homesteading the 
Noosphere” (1998), as he sees the individual hackers' contributions to free software 
projects as bids to win a better reputation for their skills.

76



In order to understand how the joint enterprise behind the Ubuntu hackers' 
practice is negotiated, it is worth examining how they relate to the end result 
of their labour: the code itself. I contend that the Ubuntu hackers have clear 
values with which they seek to imbue their work – depending on their social 
relations to their perceived audience. These values are placed in what can be 
described as the spectrum of the “hacker aesthetic” – between the form and 
the function of the code as presented above. 
In order to anthropologically analyze the values hackers attribute to their 
work, I assume the “methodological philistinism” advocated by Alfred Gell, 
who contends that we must take a stance of “resolute indifference towards the 
aesthetic value of works of art” in order to make a coherent anthropological 
analysis of the specific objective characteristics of art objects without 
succumbing to the fascination of the process through which they are crafted 
(Gell 1999:161-162). Gell argues that our appreciation of aesthetic value is 
closely connected to our understanding of the technical process through 
which an artefact has come into being. When the difficulty of that technical 
process transcends our understanding, it forces us to construe it as magical 
(Gell 1999:169), thus adding to our fascination. Following this, Gell contends 
that
the technical process through which an artefact has been created is “not only 
the source of its prestige as an object, but also the source of its efficacy in the 
domain of social relations.” (Ibid. 178). He applies this in his analysis of the 
delicately carved prows of the Kula-canoes of the Pacific Trobrianders. There 
he turns away from traditional aesthetic considerations and argues that the 
prows not only showcase the skill of the carver but also his magical ability, 
thus leveraging the prestige of the canoe as an art object with great effect in 
the social relations between the skilled canoe carver and the spectators, who 
come to consider his skill as magic ability (ibid.:175-178).
Similarly, I turn away from the traditional considerations of the aesthetics of 

77



source code in order to argue that the Ubuntu developers write their source 
code based upon design values which seek to invoke specific attitudes with 
their audience, attitudes typical for the social relations that they seek to 
encourage through their work.
Since the source code can be copied endlessly at no cost, the magic of its 
technical process does not lie in the aura of individual original representation 
or the spectator's appreciation of the manual skill that went into producing it, 
but rather in the mental ability required to write, understand, and master the 
code. Thus it would seem that the skill of a hacker can be measured by how 
well he has managed to fulfil the dual requirements of writing code that fulfils 
its intended function while remaining elegantly concise – often to the point of 
convolution. The greater the gap between the amount of code written and the 
result produced, the more magical and artistic it will appear in the eyes of the 
reader. And though the results produced by the computer reveals the final 
verdict of hacking ability, understanding of source code – or lack thereof – is 
often seen as a good indicator of the ability of the individual hacker, making 
intricately complex code not only playful challenges but also assertions of 
skill and dominance. Following this, the Norwegian anthropologist Lars Risan 
argues that the hacker infuses the code with his skill and charisma in a 
sacramental way: It is not just a symbol of the hacker's skill, it is the hacker's 
charisma – visible in his code (Risan 2005). Thus the hackers can show off 
their abilities through the elegance of their code, and, by extension, their own 
minds.29

This kind of “artful hacking” is how hackers commonly present their craft as 
described above, and though a fair number of hackers do write code to assert 
their skills, it is only a few of the Ubuntu hackers who define hacking as an 
art in this way. Rather, they define hacking as the act of winning and retaining 
mastery over the computer, which, when it has been achieved and the 
program works as planned, is an immensely satisfying experience. As Ubuntu 

29 Hacker folklore is full of stories of elegant hacks that shows off the ability of a 
programmer and challenges the reader to understand it. One is the story of the Mel, a so-
called “real programmer” whose code was so intricately written that it used every single 
possible function of the hardware to run as fast as possible, but which also made it so 
difficult to understand that the storyteller spent almost 2 weeks just to understand the 
code, only to remain unable (or respectfully unwilling) to alter it. The story, like much 
other hacker folklore and jargon, can be found in Eric Raymond's “The New Hacker's 
Dictionary” (1996).

78



and Synaptic hacker Michael describes it: 

It's just like having finished a puzzle... it gives you a sense of 
accomplishment... a creative outlet, but not really an art. To be an art it has 
to involve passion and feeling. Programming is not about love and great 
feeling. [...] It is mostly a mastery of skill. A complex skill... [...] It has to 
have some meaning. It has to make life easier in some way – solve 
problems somehow.

If the code functions well enough not to warrant closer examination, nobody 
will care whether the code is elegant or not. It is not until a hacker needs to 
modify the working code himself that he becomes concerned with its design, 
the programming language in which it is written, and the shape of its internals 
– all of which are elements which will task his skill and control of the 
computer. But in order to improve the source code, you need to understand it, 
and this easy understanding is often at odds with the “elegance” and 
artfulness advocated above. 
Instead, the Ubuntu developers promote values such as transparency and 
modularity in order to ensure that others will be able to work on the code once 
they move on to other projects. In his analysis of the Linux kernel developer 
community, the American media researcher Matt Ratto calls this continuing 
coming and going to software projects a culture of reworking. Reaching back 
to the "oral tradition" of Unix, it is a culture of developers creating software 
"inherently directed towards 're-designers' – other programmers with the skills 
and knowledge to re-work the programs for their own use" (Ratto 2003: 114). 
In this way, Ubuntu hackers focus on the lasting value of their work which 
through the open model of development becomes cumulatively more 
maintainable and perfect for any conceivable use.
Yet other hackers focus on the results produced by the code rather than how 
elegant or maintainable the code might be to other developers. Michael sums 
up this position quite well, as he sees it merely a positive side effect if others 
can read his code. He argues that generally, you need to understand the 
problem that the source code seeks to solve in order to understand the source 
code – you have to be in the same frame of mind as the developer who wrote 
it, and then it won't matter how complex the code is. What matters most to 
him is not what you share, but the fact that you are sharing freely on the same 
terms as everybody else. This notion stems from the ideology of the free 

79



sharing of information driving projects like GNU and Debian built, which 
Gabriella Coleman argues is built into a “corporeal ethos” through shared 
technical practices such as those described above. Coleman sees this ideology 
of sharing as having initiated a new reworking of the concept of intellectual 
property through other projects such as the Lawrence Lessig's Creative  
Commons which seeks to introduce elements of the free software ideology in 
other forms of intellectual property such as photography, films and writing 
(Coleman 2005:187).
Thus, there appears to be three different sets of social relations that can 
mediated through the source code between a hacker and his intended audience 
and potential collaborators, depending on what design elements and aesthetic 
values the individual hacker favours. 
One set of social relations follows an ideal of the lone brilliant artist whose 
work is to be appreciated unaltered and which asserts his seemingly magical 
ability in relation to other hackers through complex and concise code 
appearing as puzzles to be solved. Another set elevates an ideal of communal 
authorship seeking to make the code maintainable and understandable to 
enable the open collaboration that may result in the continued use and 
development and eventual perfection of the code. And a third set that puts the 
free sharing of as its ideal, offering users new capabilities to improve their use 
of the computer. 
Almost all of the Ubuntu hackers will argue that these three ideals are not at 
odds with one another and that it is possible to provide for all three, since they 
themselves not only appreciate the challenge of intellect that complex code 
represents and often use it as a way to show off their abilities, but also enjoy 
the easy mastery of the computer offered by code written with maintainability 
in mind and the immediate usefulness of code written with ethical 
commitment to provide those functions with little worry for elegance or 
maintainability. In this way, the hackers follow their shared history of learning 
both skills and their aesthetic notions of hacking according to the “hacker 
ethic.”
In the final part of this chapter, I will use the examples of three software 
packages in Ubuntu to show how different sets of social relations and 

80



motivations can be built and mediated through the code – to the point where 
the above design values may come to conflict with each other, thus breaking 
with the generalized idealism of the “hacker ethic” and showing how the 
Ubuntu hackers negotiate their joint enterprise in relation to the overall goals 
of the Ubuntu project.

Writing beautiful code to assert one's ability
Peter is the developer of Adept, a package management tool like Synaptic, 
which I explored in chapter 3. But whereas Synaptic is designed for use with 
Ubuntu's standard desktop environment called GNOME, Adept is designed 
for use with the desktop environment KDE. Young, ambitious and highly 
talented, Peter began developing Adept, hoping to incorporate some new 
features that were being developed in the Debian community, but he found it 
difficult to work with the existing APT code upon which Synaptic was built, 
as he considered its design flawed as it forced him to write a lot of code just 
to accommodate it. He expressed his frustration on his blog:30 

Existing code just hates me. I always have to work around some brain 
damage. I had to ditch kmdi. It just didn't work. I spent a lot of time 
discovering new and interesting ways in which it can break. This is very 
frustrating experience. And i'm experiencing the same with konsolepart 
now. Buaaaahaaa. Rethink your design. [original emphasis]

In the end, he had rewritten a great part of the core APT functions, and gave 
up on the original APT code, basing Adept on his new work – which several 
other Ubuntu developers mention as examples of really well-engineered code, 
though, by their own admission, it also requires much effort of them to read 
and modify. As Adept no longer was based on the APT code which had 
troubled Peter so, he stopped his collaboration with the Synaptic developers. 
As Michael, the lead developer of Synaptic, hesitantly explains:

That's a difficult kind of story... [...] I think he wanted to do it differently, 
and he wanted to do it, like, in his way... and he just started something new 
[...] at least I felt that initially he have been very challenging: 'I will do 

30 Peter's blog is a public diary, containing poetry, rants about bad code and reflections on his 
life. It is very honest, at times conveying depressions and remorse, acknowledging that his 
perfectionism at times makes it difficult for others to work with him.

81



better than Synaptic which is kind of not good and I can do better and this 
sort of thing.' [...] some people are there to prove a point. To show that 
they can do better...

Though not initially intended, frustration at the lack of mastery that the APT 
code offered him led Peter to develop Adept by himself to prove the worth of 
his design and assert his mastery of the computer directly in the code.31 
Michael for his part is distinctly unhappy that Peter decided not to collaborate 
with them, as he, like most Ubuntu hackers, doesn't share this view of the on-
line environment as an arena for contest.

Hacking as a shared technical challenge 
Most Ubuntu hackers see their community as a place for collaboration where 
they can joke and socialize whilst sharing the technical challenges of 

31 Indeed, it appears that many of the biggest forks and rivalries in the free software 
communities have been sparked by a technical frustration based on the fact that the 
project's programming language or choice of design did not match the interests and 
abilities of some hackers, thus making it difficult for them to contribute and show off their 
abilities. The classic example being the two free software desktop environments, KDE 
and GNOME, written in the two different programming languages C++ and C, 
respectively. One of the reasons for the initiation of the latter project allegedly being the 
founders' lack of skill with C++, which led to some ridicule from the KDE developers.

82



development, writing code so as to support other hackers' understanding to 
make it possible for them to extend and adopt it for their own needs in the 
hope that this open, communal authorship of the code will yield the best 
results. Ubuntu developer Scott is a keen proponent of this, enjoying the free 
availability of the source code and likes the challenge of mastering the 
computer. Nothing frustrates him more than not being directly able to fix a 
problem either due to the source code being difficult to read, or due to being 
given inadequate information to reproduce the problem. He loves being able 
to do “drive-by bug fixing” where he can read just the small part of the code 
relevant for his fix without having to understand all of its details and the 
mindset of the programmer who wrote it. Scott likes to move from project to 
project as his development interests change, and he works hard to make 
maintainability a key design element in his code. For example for his current 
work on the new Upstart package, he clearly indents and comments it, 
introducing other developers to it so that they can help maintain it and take it  
over when he moves on. He appreciates the high ambition of the Ubuntu 
project that “Things should just work” - a phrase that has become something 
akin to a motto within the community. It is an idea which Ubuntu hacker 
Matthew expresses thus:

Computers behave deterministically. Software behaves deterministically. 
The combination of these two things lets us produce software that works 
100% of the time. That's harder than getting to 99% of the time, but even so 
accepting the "Make it work 99% of the time and add a bunch of 
preferences to let the 1% make it work themselves" approach is accepting 
inferior software. We aim high, and we fairly consistently hit. And that's 
how it should be.

Apart from expressing a deep conviction of the potential for perfection of 
computing technology typical among hackers, Matthew's statement is also 
remarkable in that he states that it is something that “we”, meaning the 
Ubuntu community, can do. In this way he includes the wider community 
involved in the open development model with their testing and bug reports. 
Indeed, as Ubuntu hacker Martin explains, it is the appreciative user feedback 
and the discussions to find solutions that many hackers find to be the most 
rewarding:

83



So one part is of course solving problems with programming and the 
technical stuff, and the other thing is that I really love to help other people. 
So if they come to me and have an interesting problem - "hey, I want to 
achieve this-and-this" - my brain starts engage and propose different 
solutions and to discuss them and to implement them. Well, I love 
challenges, basically!

In this way, the challenges of making the software “just work” based on bug 
reports and of implementing user suggestions both spring from interactions 
within the community, sharing technical challenges. But as both hardware and 
software continue to evolve, and new features and new hardware constantly 
introduce unknown factors and bugs into software which otherwise “just 
works”, often breaking software which worked well before and requiring both 
engineer redesign work and bricoleur bug fixing work in order to remain 
stable. The goal of perfect software will continue to offer a never-ending 
stream of both shared technical challenges and appreciative user feedback on 
which the Ubuntu developers thrive.32 As Ubuntu hacker Paul says with a 
smile, after having spent 4 hours working with Matthew to hack the LED 
lights on an obscure brand of tablet PC trying to get them to work properly: “I 
shall be annoyed until I figure it out.”

Sharing an ethical commitment 
For the Synaptic hackers Michael and Sebastian, the essential matter is not 
whether the code is easy to maintain or beautiful to read, but that it is useful 
and free to be shared – a quality which they have come to consider with as 
something akin to an ethical obligation. As Michael explains:

I think it's really really important to be able share your work and your 
knowledge with other people. And especially if you are gifted in a way that 
you... that you understand more about this than other people. Should, in my 

32 Similarly, Linus Torvalds has explained that it was due to the interest from the Usenet 
discussion groups that he continued to develop the Linux kernel beyond the first couple of 
versions: “Without Usenet, I'd probably have stopped doing Linux after a year or 
something ... it was a fun project, but at some point I'd have felt that hey, it's done, I've 
proved it, I did this thing, it was fun. What's the next project in life? But because people 
started using it, motivation went up, there was a sense of responsibility, and it got a lot 
more motivating to do it. And so thanks to Usenet I just continued to do it.” (Moody 
2001:69).

84



opinion, be a very good reason to help and share more than people who 
understand not as much about it.

It was this notion of creating something with the computer that is useful and 
helpful to other people that led both Michael and Sebastian to get involved in 
making the Debian package management infrastructure understandable and 
usable for less technically inclined users – first through Debian and Synaptic, 
and eventually to Ubuntu. Their collaboration and friendship seems to be in 
no small part based on strong, personal ethical commitment which they have 
found to extend beyond software: One is a vegetarian, arguing that he cannot 
eat the meat of any animal which he is not capable of killing himself and the 
other is a vegan seeking to pay respect to all life.33 They have found that the 
ability of software to create endless copies of concrete results through digital 
means empowers them to follow through on their ethical and political ideals 
and make free software more accessible to more people, thereby hoping to 
help create a sustainable alternative to the corporate closed model of 
development.
For Michael, working on Synaptic has offered the challenge to use his 
abilities to improve free software, making package management more stable 
and usable, which has been only reinforced by his employment by Canonical. 
For Sebastian, though appreciative of the goals and achievements of the 
Ubuntu community, he is not as closely attached to Ubuntu, and he says that 
the future of Ubuntu isn't very important to him. As much as he'd like to see 
Ubuntu made as accessible and usable as possible – especially for people in 
the third world – he has other goals in his life and does not feel committed to 
Ubuntu directly but rather to the ideals the project represents. As he 
concludes: “If people come to me with a problem, I will always help them.” 
For now, contributing to Ubuntu is a meaningful and intellectually stimulating 
way of expressing his ethical convictions.
But at times, this ethical commitment is challenged by the need to make 
Ubuntu “just work” for as many people as possible. As many users, and 
Canonical, want to make it easier to use Synaptic to install proprietary 
software, including software that supports proprietary media formats which 
most home users have come to expect and need if they are to be lured away 

33 Though not uncommon, vegetarianism is far from the norm among hackers, and most 
happily eat whatever they please.

85



from Microsoft Windows. Recently, Sebastian made proprietary software 
available for installation from the Internet on the Ubuntu default system, and 
though the Ubuntu community officially maintained its pledge to ship a 
system consisting only of free software on the CD-ROM, Sebastian and 
Michael's work made it much easier to install proprietary software straight 
away, treading a careful balance between the ideological hopes of the free 
software movement and the pragmatic quest to solve Ubuntu's bug number 
one and win world domination for free software.

Conclusions
In this chapter, I have examined the diverse motivations of the Ubuntu 
developers for contributing to the Ubuntu system. I have claimed that the 
Ubuntu hackers' various motivations for participating in such an inherently 
social community of practice are reflected in how they position their work in 
relation to their fellow hackers, and drawing upon the work of Alfred Gell, I 
have sought to provide a more nuanced rendition of the common 
understanding of hacker motivation as represented in a range of second-order 
hacker reflections. Based on this analysis, I have found three main 
motivational factors for the hackers' mutual engagement in Ubuntu: proving 
their ability through technical elegance, having fun by socialising and 
working together on a technical challenge, and sharing an ethical commitment 
to writing software that can be shared freely for the benefit of others.
The centre of gravity from which these three factors extend is the not quite 
reified goal of continuous learning through practice that is a vital part of any 
community of practice (Wenger 1998:86) (cf. illustration 9).
Most of the Ubuntu hackers I have interviewed consider it possible to 
accommodate the goals of all three motivational factors, but as I have sought 
to show above, the motivational factor prevalent within a given project will 
shape it on a coding level. By shaping the code for either elegant beauty, 
maintainable extension, or easy study or pragmatic use, the developers create 
the potential for conflict between other developers seeking use that code for 
their own needs. These factors shape not only Michael and Sebastian's 
Synaptic, Peter's Adept and Scott's Upstart, but also each of the more than 

86



19.000 other upstream projects which are packaged as part of the Ubuntu 

system.
Remarkably, the Ubuntu hackers explain their contributions to Ubuntu and to 
free software with their enjoyment of the socialising and connecting with 
users, learning from the technical challenges involved in its development, and 
the ethical commitment to free software rather than any a direct desire to 
prove their ability. This is partly due to hackers not wanting to present 
themselves as vain enough to consider this their main motivation, and partly 
due to Mark Shuttleworth picking and hiring developers with those social and 
ethical values, offering them further incentive through employment, travels 
and responsibility. In this way, the joint enterprise of the Ubuntu developers is 
to some extent socially engineered to build a community of practice founded 
on the positive development values that Shuttleworth seeks to groom to 
further his overall goal of world domination: communal perfectionism and an 
ethical commitment to free software.

87

Illustration 9: A depiction of the field of motivational factors within which Ubuntu 
is developed. At the warm core, it is the continuous learning through practice  
which engages the Ubuntu developers, yet this learning can be channeled in  
different direction depending on how the social interests of the individual  
developer.



Chapter 5

“A system that works for me”

– how Ubuntu hackers use and configure their system

To the Ubuntu hackers, the computer is not merely a tool, it is the 
environment in which they work, interact and collaborate. Like any other 
craft, hacking requires specialized tools, but for the hacker, these tools are 
programs such as text editors, compilers, debuggers, IRC chat clients, and 
email programs which all constitute functions accessible through the 
computer. Since the way that the individual hackers perform their work can 
vary a fair deal, so can the way in which they configure these tools for their 
own use. 
Having examined a few select packages among the thousands of the Ubuntu 
system to show how the Ubuntu hackers participate in a community of 
practice based on their diverse motivations and shared work with improving 
the system, I now turn to the Ubuntu system as a whole to examine how the 
Ubuntu hackers carefully configure the system as the all-encompassing means 
to afford their personal mastery of the computer through which they fulfil 
their social and personal interests.
In this chapter, I describe how one Ubuntu hacker, Martin, uses and 
customizes the Ubuntu system in order to argue that the Ubuntu system is not 
simply a tool to be used, but rather the scene of the shared repertoire (Wenger 
1998:82-85) of tools and routines through which the Ubuntu community of 
practice is defined – a space at once present both on the local computer and 
on-line, multiply inhabited, shared, and continually built by the hackers in a 
way similar to what Tim Ingold describes as dwelling. I claim that the 
continued stable development of the Ubuntu system takes place through a 
process which Ilkka Tuomi calls sedimentation, which allows the Ubuntu 
developers as well of the millions of people using the system to dwell within 
the system, adopting it as their own.

88



89



90



91



92



93



94



95



96



97

Illustration 10:  Martin's work place. The laptop is used for testing and travels. The  
special keyboard is ergonomically designed to reduce typing-induced stress on the  
wrists, as Martin has had typing-related injuries.



Configuring and using the Ubuntu system
Like most Ubuntu hackers, Martin works at home, in the small commune 
apartment which he shares with his girlfriend and a friend. As they all have 
their separate rooms, it has been possible for him establish his work 
environment in his  bedroom, in the corner furthest away from the entrance. 
He works with two computers: his main system where he does most of his 
work, and his laptop, which brings with him for conferences and uses for 

98



testing various volatile programs which might compromise his system (cf. 
Illustration 10).
Until he began working for Canonical, Martin rarely ever used the system's 
graphical user interface, but mostly just the command line – the old 
command-response interface of Unix and teletypes described in chapter 3. 
The command line gives him a clear and transparent means of interacting with 
the computer through the concise and extensible commands he inputs, it also 
allows him to spread his work beyond his own machines, as he can use it to 

99



log on to computers at the Canonical data centre, to computers related to other 
free software projects around the world or to his own server halfway across 
the country, with the abstract and transparent textuality of the command line 
offering him the same level of control of those remote systems as if he were 
there in person.
But most importantly, the command line allows him to configure his work 
flow in as much detail as he wishes. He uses the command line for email, for 
editing text and source code, and for manipulating the software packages that 

100



he builds, tests and uploads to the Ubuntu servers. All of this work involves 
some repetitiveness, which he constantly seeks to limit by writing new scripts 
– series of commands to be invoked with a single command. Martin gives the 
example of having to spend 15 minutes calculating how much each member 
of the commune owes whenever they received a new telephone bill. 
Eventually, he decided to write a script which can parse the digital copy of the 
bill which the telephone company sends, and output how much each member 
of the commune needs to pay. In this way, he has optimized his work flow by 

101



making the script doing the work for him, so he no longer has to remember all 
the details of the phone bill calculations. As he concludes:

It always starts out like that. You're doing your task, or a task you've done 
before, and at some point you wonder "why do I always need to type five 
different commands to achieve this task which I'm doing over and over 
again?" [...] And so, some times when you have nothing urgent to do, you 
just think about the details and say "let's factorize this into a function or 
[...] let's factorize this into a shell script [shell is another computing term 

102



for the layer of interaction between the user and the computer system].

This practice is very common among the Ubuntu hackers who continuously 
customize their work environment to fit their current work, adapting and 
configuring the entire system to fit their needs. Martin has been customising 
his systems for over 8 years, slowly evolving with the each new version of 
Debian or Ubuntu he installs. As he explains:

103



It's [the command line] basically like an organism that over time you 
can dynamically adapt it to your needs and to your current tasks so that 
you can work on it quite efficiently. This is what makes it so much fun, 
because you can never do this with GUI [Graphical User Interface] 
applications. I mean, it might be easy to learn them, but it always take 
the same time to do, so it is hard to factorize common tasks to them.

In this way, the Ubuntu system with the command line, its most flexible and 
transparent representation, allows Martin and other Ubuntu hackers to build a 
shared repertoire of tools and routines spanning almost all of their mutual 
engagement in the project, including programming, managing their emails 
and communications, emulating and testing other systems, and accessing 
other computers on the Internet, thereby constituting an entire digital 
landscape which they can adapt for their needs.34

Dwelling and building in the Ubuntu system
The way that the Ubuntu hackers arrange the digital space of the Ubuntu 
system shares more than a few similarities with how human beings arrange, 
use and build the physical space they inhabit. The British anthropologist Tim 
Ingold, seeking to understand how we come to be part of the environment we 
inhabit, breaks with the traditional “building perspective,” which posits our 
cities and buildings as the concrete manifestation of our purely cultural 
ordering of our environment (Ingold 2000:178-181). Instead he defines a 
“dwelling perspective” based on Martin Heidegger's term “dwelling” which 
springs from Heidegger's examination of the German word bauen, which 
today means building in the sense of cultivation, preservation and 
construction, but the etymological roots of which also means dwelling as in 
“the whole manner in which one lives one's life on the earth,” in short 

34 It is an acknowledged fact that hackers have widely different needs and preferences when  
it comes to customising their system depending on their personal preferences and the 
hardware at their disposal. Thus, the Canonical-employed Ubuntu developers have from 
the beginning sought to encourage and enable community hackers to rebrand and re-
package Ubuntu for their specific needs. This has not only resulted in a wide range of 
derivative distributions, but also actual sister versions of Ubuntu, sharing the same 
infrastructure but using other central parts of the free software projects available. For 
instance, the Kubuntu version, which uses the KDE desktop environment rather than the 
GNOME desktop environment that is the default used by Ubuntu. 

104



meaning that “I dwell” is identical to “I am” (Ibid. 185). Based on this, 
Heidegger concludes that “To build is in itself already to dwell ... Only if we 
are capable of dwelling, only then can we build” (quoted in Ingold 2000:186). 
Heidegger argues that we are always dwelling, whenever we use and inhabit 
our environment, and it is only by dwelling that our environment can be 
understood and thus organised in the mind. Following this, Ingold argues that 
building cannot be understood as a simple process of realising a pre-existing 
architectural design through raw materials – it is only through dwelling, 
relating to the world one inhabits, that building is possible.
Thus, Ingold argues, as children grow up in environments furnished by the 
work of previous generations, they dwell in a built environment that is shaped 
through human intentionality, and through that environment they adopt 
“specific skills, sensibilities and dispositions” with which they in turn 
continue build the environment (Ibid:185-186).
Based on the above examination of the Ubuntu hackers' use of the Ubuntu 
system, I contend that a similar process of dwelling is at play. As I argued in 
chapter 2, computer systems are like cities: Layers upon layers of human 
intentionality that evolve as new inhabitants move in, constantly re-exploring 
and redefining its structures and applications, adapting and re-designing them 
for new purposes, maintaining them differently as needs change. And the 
Ubuntu system, and especially the command line at its heart, stems from the 
almost 40-year old “oral tradition” of Unix technology being refined and 
redesigned for varying needs.
Thus the system, like any other built environment, has been shaped by the 
activities of several generations of predecessors whose work is now reflected 
in the skills, dispositions, and dwelling of the Ubuntu developers. When they 
adopt and learn the details of the system, customising it to fit their needs, they 
begin to dwell within the system, internalising their work flow and social 
relations to their shared community directly in the system itself, turning it into 
an extension of their mind, as described in chapter 3.
It is in each hacker’s adoption and customization of the shared repertoire of 
the tools and routines of the Ubuntu system – and with it the associated 
community of practice – that their shared history of learning to use, to build, 
to dwell within the system becomes apparent. And the hackers often share the 
stories of interesting configurations and use of the system, such as scripts of 

105



which they are particularly proud, incorporating stories and slang into their 
shared repertoire as well. As I will argue in chapter 6, it is through this shared 
history of acquiring the skills and internalising shared norms, that the Ubuntu 
hackers become members of a shared community of practice.

The sedimented system
As I argued in chapter 4, each Ubuntu hacker weighs his motivations for 
working on Ubuntu differently in their negotiation of the joint enterprise of 
Ubuntu, and for that same reason, they all find their personal adaption of the 
system to be a central benefit, as it allows them to configure the system to 
match their different goals. Ubuntu hacker Colin's answer to the question of 
what he gets out of contributing to projects like Ubuntu and Debian, proved 
quite typical:

"I got a system that works for me." (he pauses, grins, then elaborates:) 
"...It's like moving from renting a house to buying a house – you begin to 
look at it in a different way. You begin to notice all the places where there 
is room for improvement. Part of it is commitment... having and taking 
the responsibility to make things work, but it is also having the 
opportunity to do so. You decide for yourself." 

Colin's comparing his use of the Ubuntu system to inhabiting a house is 
remarkable, as it underlines that it is only once the hackers have taken up this 
state of dwelling within the system that they begin to notice how it can be 
improved, and begin to take responsibility for building, extending and 
improving it. 
Just like how Michael, upon becoming more familiar with the Debian system, 
decided to adopt Synaptic as described in chapter 3, the open model of 
development allows the individual hacker, such as Colin, to improve the 
system, taking responsibility for making changes that will affect more than 
just themselves and their own use. Whenever the Ubuntu developers fix a bug 
or implement a new feature in a software package, they upload a new version 
of that package containing those changes to the main Ubuntu archive on-line, 
against which all on-line Ubuntu systems running the same version of Ubuntu 
are synchronized through Internet updates controlled by package managers 
such as Synaptic. This not only makes it very easy to distribute fixes as they 

106



are produced, but also to introduce unexpected problems if these updates 
aren't thoroughly tested. 
In order to be able to extend the Ubuntu system without risking to break the 
system for the many users through an ill-conceived software update, the 
Ubuntu developers work on at least three active versions of Ubuntu at any 
given time: Two stable versions which have been released within the past year 
for end-users to use and for which Canonical guarantees support – which 
requires the Ubuntu developers to maintain and update them as new security 
holes and integral weaknesses are exposed. And one version which is the 
current development version which, as described in chapter 2, merges the 
Ubuntu system with the latest unstable upstream software derived from 
Debian, which the Ubuntu developers then work to gradually stabilize, with 
the testing and bug fixing work intensifying to ensure the quality of the 
system in time to meet the release date.
The Finnish technology theorist Ilkka Tuomi has called this process of 
maintaining different versions of the same software a continuous 
sedimentation, comparing the older, stable versions of the system as layers of 
sediments left behind in the evolutionary pattern of software development 
(Tuomi 2001). And though the Ubuntu developers spend time maintaining the 
older, stabler sediments, they dedicate most of their time to working on the 
development version as that is where the software has not yet been 
sedimented for others to use. Like construction workers collaborating directly 
on-site, the Ubuntu hackers do their work directly within the virtual 
construction site of the development version of the system itself as it allows 
them to spot and fix problems in the system as soon as they occur. 
With each new development cycle, the Ubuntu hackers start afresh, branching 
out from the Debian upstream, slowly rebuilding the system to incorporate the 
latest upstream changes and their own new features, and at the same time 
stabilising it for their own use. In this way, their work follows the two aspects 
of hacking described in chapter 3, resulting in two parallel tracks of work: 
One focused on development: the drafting, designing, developing, and 
hacking up new features and their eventual integration in the release; and one 
focused on integration: the merging of improvements from Debian and 
stabilising, maintaining, integrating, and hacking on the system to ward 
against the constant disruption caused as new features and redesigns 

107



inevitably introduce new bugs and regressions to the code. 
Illustration 11 shows how the system is developed. Vulnerable at first, it 
slowly matures and hardens through gradual freezing of the system code in 
order to avoid introducing new bugs. A freeze is the common hacker term 
signifying that the code is not open for change. Despite the name, a freeze 
merely indicates a different degree of control with changes made to the 
system, as hackers will need to apply for a Freeze Exception from one of the 
leading Ubuntu hackers employed by Canonical – such as Matt Zimmerman, 
the chairman of the Ubuntu Technical Board, or the release manager for that 
given release – in order to get their changes uploaded. During the 
development cycle, test releases are made as more and more of the system is 
frozen, in order to get the constant feedback in the form of bug reports and 
discussions from and with the wider community of interested users testing 
and using the evolving development version of the system. The input from 
these contributors are necessary to ensure that the shared environment of the 
Ubuntu system not only works for the Ubuntu developers, but also for the 
main body of users who will be using the system once it is released.
It is the leading Canonical-employed hackers who deal with the stress of 
making the development version ready for final release, which they release

108



109

Illustration 11: A simplified diagram of the Ubuntu release cycle with its two parallel tracks.  
One focusing on the merging of the Ubuntu code with the Debian upstream (ending with the  
Upstream Version Freeze at which point the developers work to integrate the new code in the  
release), and one focusing on the specification, planning and development of new features for  
inclusion in Ubuntu. Feature development ends with Feature Freeze, at which point all  
developers focus on integrating the new features in the system for release.



when they consider it stable enough for all – both hackers and users – to use. 
When a new version of Ubuntu is released, a new development version is 
immediately initiated, and usually, soon afterwards, an old stable version of 
Ubuntu is retired. But as soon as the system has been released on CD-ROM, it 
is no longer frozen in the on-line archive, and the Ubuntu hackers continue to 
develop on it so as to support it by adding changes for later updates which 
users can download upon installation.
For all the contributors, from core hackers to casual bug reporters, the system 
being developed is not merely a product for somebody else to use – it is their 
own work environment. Therefore, the system becomes an end in itself, rather 
than just a tool to be wielded to solve other problems. It is through the 
continued successful shared use and development of the system that the 
Ubuntu hackers not only seek to fulfil their motivations for working within 
the community, it is also the nexus of their shared association.

The many dwellers of the Ubuntu system
Tim Ingold concludes his essay on dwelling by comparing a house to an oak 
tree as described in the Estonian biologist Jakob von Uexküll in his book 
“Stroll through the Worlds of Animals and Men” (Ingold 2000: 176). Von 
Uexküll shows the manifold inhabitants of the tree: There is the fox building 
his lair at its roots, the owl perched on high on its branches, the squirrel 
foraging nuts in the intricate maze of the treetop, the various insects making 
their home in the bark and many others. Each of these animals perceive and 
act differently in the environment of the oak tree, and von Uexküll defines the 
sum of each animal's actions and perceptions of the tree as its Umwelt. Von 
Uexküll argues that each animal is unable to detach its consciousness from its 
Umwelt to see the tree as a neutral object – they will invariably attach their  
own activities to it (Ibid. 176-177).
Ingold argues that a house is inhabited in much the same way as von 
Uexküll's oak tree – that houses, too, are living organisms, constantly being 
built and rebuilt through the dwelling of its many inhabitants – human as well 
as non-human – shaping their own Umwelten through the flow of intentional 
activity (Ibid. 187-188).
Like the house or the oak tree, the Ubuntu system is an incredibly big and 
complex entity with the potential to cover a constantly increasing number of 

110



configurations, uses and needs. Each user of Ubuntu values different 
functions of the system and has different motivations for using it, and through 
this use, each user comes to adapt the overall, standard system to his own 
personal work flow and interests, shaping it into a personal Umwelt, distinct 
and separate in use and configuration from that of other users, drawing upon 
the thousands of software packages to fashion his own nest in which to dwell.
These Umwelten can be as physically and mentally separate from one another 
as that of a squirrel might be to an owl. From high-powered servers offering 
critical services to hundreds of users to the cheap desktop PCs being used for 
games and socialising. From Ken, an artist using the system to design 
graphics and edit photos, requiring minute manipulation and specialized 
photo equipment, to Henrik who is paralyzed from the neck down and 
requires a specialized “head mouse” and dialing wand to navigate the system, 
shaping not only his work flow but also his configuration of the system.
In this way, each user adopts the system for his needs, some even contributing 
back based on that use, in order to scratch their own itches. Like Ken who, 
displeased with the look and feel of the desktop, works to make it as visually 
pleasing and consistent as possible, or Henrik who works to improve the 
accessibility features of Ubuntu to make the system easy to use for disabled 
users, or Og who submits Brazilian translations of text in the Ubuntu 
packages in order to improve Brazilian language support in Ubuntu, or 
Sebastian who, wanting a better graphical user interface for his favourite 
package manager, works to improve Synaptic. Thus, in order to grow, the 
system is dependent on 

111



112

Illustration 12: Using the idea of the free software communities as an eco-system of interdependent  
upstreams and downstreams, the upstream projects are the roots, creating the foundation of the  
system united in the Debian distribution, from which each new version of Ubuntu is an offshoot,  
growing stronger and stronger through the development and maintenance of its life cycle,  
supporting a multitude of users and their diverse needs throughout the eco-system, before each  
branched version of Ubunu eventually reaches the end of its life cycle as a product and is shed  
from the tree as old, unsupported technology. 



all of the hackers and users individually dwelling, sharing and collaboratively 
building the system into a constantly evolving organism, like all the different 
species inhabiting and supporting the eco-system of an oak tree, with each 
new version of the system building on top of the previous to reach further, 
supporting more uses and covering more needs (cf. Illustration 12).

Conclusions
This chapter set out to explore how the Ubuntu hackers use and customize the 
system. Like other expert craftsmen, the Ubuntu hackers spend much effort 
towards configuring, maintaining and extending their work environment to 
afford a shared repertoire of specialized needs in order to enable them to work 
efficiently. But not only does this involve customising work tools such as the 
command line, but also maintaining connections to other computers and test 
systems, organising personal files, and configuring relevant means of 
communication to fit the personal needs and mental pursuits of the individual 
hacker. I have compared this way of being at home in the built environment of 
the Ubuntu system to Tim Ingold’s notion of dwelling, and I have argued that 
dwelling is the necessary prerequisite for developing the system. As Ingold 
remarks, “building, then, is a process that is continually going on, for as long 
as people dwell in an environment” (Ingold 2000:188).
The Ubuntu developers use the open model of development to collaboratively 
engineer their shared environment in a sedimented, almost organic fashion 
that affords not only their own destabilising practices of building and 
dwelling in a personal, trusted system of their own, but also the specialized 
needs and configurations of the millions of users who also come to dwell on 
the more stable branches of the Ubuntu system. In this way, the Ubuntu 
system is the scene of the community of collaborative practices through 
which the hackers develop and use the system itself as the means through 
which to fulfil their diverse social and social interests.

113



Chapter 6

Building trust online

 – how the Ubuntu hackers collaborate on a system-
wide scale

As I have argued in the preceding chapters, the Ubuntu hackers engage in a 
community of practice to develop the Ubuntu system. They are brought 
together by their own personal motivations in a shared domain of interest in 
and commitment to developing software to be freely shared in a joint 
enterprise towards world domination. In this domain, the hackers build 
relationships that enable them to learn from each other by collaborating, 
discussing, sharing their work, and helping each other both on-line and in-
person, expressing a mutual engagement in their shared practices. Through 
these shared interests and practices revolving around the development of free 
software, the hackers come to share experiences, stories, tools, and ways of 
addressing recurring problems through their daily use and customization of 
the Ubuntu system – the result of their work and a shared repertoire of the 
means of their community of practice.
Yet as much as the Ubuntu hackers come to trust and depend upon their own 
configuration of the Ubuntu system in order to dwell and build a system that 
works for themselves, they must also come to trust each other's abilities and 
motivations in order to collaborate on the grander scale of building and 
maintaining the entire Ubuntu system.
In this penultimate chapter, I examine how the diverse small-scale 
collaboration based on the interests, motivations and needs of the individual 
hackers that I have examined so far, scales to the development of such an 
immensely complex system as Ubuntu: How do the Ubuntu hackers negotiate 
and take responsibility for their shared work on the Ubuntu system?
Each Ubuntu developer commits their changes to the system directly to the 
central archive of the Ubuntu system for all other developers and users to 
download, and I use Matt Elliott’s concept of stigmergic collaboration to 
explore how the individual Ubuntu hackers are empowered to maintain and 

114



extend the system in this way. Following this, I explore the processes through 
which Ubuntu hackers seek to build and maintain what Etienne Wenger calls 
a mutual accountability (Wenger 1998:81-82) through reciprocal trust built 
through both technical and social processes, in order ensure effective 
collaboration and attenuate the inherent anonymity of the on-line interaction. 35

Building on Christopher Kelty’s work on reputation and trust within on-line 
communities as well as Marshall Sahlins’ ethnography of Melanesian big-
men, I argue that the handling of this communal trust is central to 
understanding the principally stated meritocracy, which characterise the 
political and social environment of the Ubuntu hackers. And that this 
communal trust is central to their maintaining the continuous positive 
development of the system, as it is through these technical means of ensuring 
trust that the Ubuntu hackers connect their individual use of the system to that 
of the wider community of users and co-developers.

Becoming an Ubuntu developer
As noted in chapter 2, all of the software packages in the Ubuntu system can 
be changed by any of the approved Ubuntu developers, unlike the Debian 
system where each package is generally maintained and owned by one 
developer who has near complete control and authority over that package. At 
first, the Ubuntu developers instituted this free-for-all system because there 
were so few Ubuntu developers to maintain so many packages that it simply 
wouldn't be feasible to discuss and approve all changes beforehand. 
This means that, taking into account the various freezes that come into effect 
during the development cycle, the individual Ubuntu developer is not 

35   New media researcher Carolyn Miller remarks with regards to sociality on-line that “a 
rational social world is possible only with an irrational, presumptive trust” (Miller 2002: 
272). This trust is easily broken due to the lack of visual clues and rapport of the on-line 
textual environment which forces all interaction to be typed out, even when such a 
discussion might be unnecessary. As Ubuntu hacker Michael explains: “If you say, 'Hey, I 
like those Nazi guys,' in a room, everybody will lift their eyebrows, turn backs and 
physically ignore that person. You can't do that in an electronic community. There people 
cannot use physical hints or clues. They have to take the full discussion.” This lack of 
physical rapport along with the asynchronicity of hackers' preferred means of 
communication, as described in chapter 3, makes it difficult to build trust using the 
normal means of physical rapport. 

115



restricted in his ability to upload changes to the Ubuntu system, apart from 
having the technical privileges to commit changes to the system in the first 
place. These privileges are granted by the Ubuntu Technical Board which 
consists of some of the most experienced hackers in the Ubuntu community.
The process of gaining upload access to the Ubuntu repositories is markedly 
different than the corresponding process in Debian. While both processes seek 
to guarantee the abilities and trustworthiness of the hacker to be approved, the 
Debian New Maintainer process focuses intensely on testing the individual 
qualities and abilities – technical, legal as well as ideological – of the hacker 
seeking approval as to ensure that the approved hacker is of equal or 
comparable ability to the other Debian Developers. It is often a long and 
arduous undertaking (cf. Coleman 2005:373-387). 
The process to become a new Ubuntu developer with rights to upload changes 
to the central archive is less formal. First, new contributors need to apply to 
become Ubuntu members through another governance body called the 
Community Council, also led by Mark Shuttleworth.36 Ubuntu Membership 
can be granted to any contributor who has contributed a substantial amount of 
work within the community. This work does not have to be technical, but can 
be helping users on-line, creating artwork, writing and editing documentation, 
doing grassroots marketing and so forth. 
As I argued in chapter 5, each user’s dwelling within the Ubuntu system 
opens for deeper participation in the community of practice around the 
system. This is what Etienne Wenger calls a legitimate peripheral  
participation where newcomers legitimately can participate in the community 
on their own terms to some degree (Wenger 1998:100), through peripheral 
activities such as reporting bugs or writing translations which do not require a 
deep understanding of the mutual engagement and shared repertoire of the 

36 The Community Council takes care of community-related issues such as the forming of 
new teams and the growing of a volunteer support community, as well as being the central 
instance of conflict resolution within the community. Unlike the Debian community, 
where only approved Debian Developers with access change the system are allowed to 
vote on community issues, all Ubuntu members have an equal vote, no matter whether 
their contribution is technical or non-technical. But since actual access to the system is 
granted through the Technical Board, I have chosen to focus on that process here, as that 
continues to define the Ubuntu system to a much greater degree than any other kind of 
contributions.

116



Ubuntu hackers’ work.37  
When new contributors begin to make technical contributions which result in 
changes to the central archive, these contributions are reviewed and sponsored 
for upload by approved developers, like when Michael approved and 
uploaded Sebastian's work on Synaptic. If they continue to do good work, and 
their skill and experience increases, the sponsors may suggest that they apply 
to become official Ubuntu developers, or they can simply apply on their own. 
The application is the formal acknowledgement of the informal 
apprenticeship which the applicant has undertaken, participating in the shared 
history of learning the mutual engagement, joint enterprise, and shared 
repertoire within the Ubuntu community of practice. 
The developer application process consists of the Technical Board 
interviewing the applicant on IRC, hearing testimonials from other developers 
and considering the applicant’s contributions to the system. Based on this, as 
well as their own impressions of the social qualities of the hacker, the 
Technical Board vote on the application. As can be seen in this concluding 
moment from a Technical Board meeting where board members Matt 
Zimmerman (mdz) and Matthew Garrett (mjg59) consider and vote upon 
Ubuntu hacker Brandon Holtschaw's (imbrandon) application for Ubuntu core 
developer membership:

...
17:03 mjg59  imbrandon: Are you happy with being able to 

upload stuff that could break everyone's 
systems?

17:04 imbrandon mjg59, yup as i'm confident that i can NOT 
break everyones system

17:04 mdz but I'm sure you understand that this is a great 
responsibility and it's important that we 
establish whether you understand that

17:04 imbrandon we're all human but i do tend to check very well 
and do ask for opinions when its code i'm not 
familiar with

17:04 imbrandon definately

37  It was by participating in such peripheral activities that I began contributing to the 
Ubuntu system. Not only did it give me a way to interact socially with other members of 
the community, but it also made it possible for me to learn many of the technical terms 
and issues relevant for those discussions.

117



17:05 mdz mjg59: I'm ready for a vote when you are
17:05 Lure I can say that imbrandon typically publish his 

work on his server for review, particularly for 
larger changes (kdebase...) so I can say he is 
very conservative in this part

17:05 mjg59 mdz: Sure, go head
17:07 mdz +1 from me.  please remember to take this 

responsibliity very seriously, and be 
conservative with regard to the release process. 
when in doubt, ask.  even if you don't doubt, 
asking for confirmation never hurts!

17:07 mjg59 I'm inclined to go with +1, for working closely 
with upstream and seeming to have a good 
sense of the responsibilities

17:07 imbrandon ;)
17:07 imbrandon mdz, definately
17:07 mdz imbrandon: congratulations and welcome

Rather than focusing on the specific technical abilities of the applicant, they 
look to make sure that he has an active interest in the packages he gets access 
to modify, as well as being both technically and socially capable to use that 
access: only making changes which he can account for, and being willing to 
ask for second opinions when unsure and to help others in similar situations – 
in short respecting the mutual engagement and accountability of the Ubuntu 
hackers’ collaborative work. Once a hacker has been approved as an Ubuntu 
core developer, he is granted access to change the packages of the Ubuntu 
archive – and thereby to make or break the system for everybody else 
updating their system from that archive. 
With so many developers involved in maintaining and extending Ubuntu 
directly, and so many packages being changed all the time, direct 
communication before modifying a package is rare. There are recognised 
areas of expertise where other developers rarely tread, but if a change to one 
developer's special interest packages is necessary in order to make some other 
change go through, and that developer isn't around to approve of it, it is fair 
game to change it without their consent, as they can always revert it later. 
This, of course, only applies to the development version of Ubuntu. Updates 
to the stable versions of the system require a period of thorough testing and 
peer-review before they are approved. Though it is technically possible for 

118



any approved Ubuntu developer to upload a change to a stable version 
without prior review, it is almost solely the Canonical-employed developers 
who handle such stable version updates.

Building digital trust
This mode of system-wide collaboration on the integration of packages is 
markedly different than the close, one-on-one development collaboration 
between Michael and Sebastian as described in chapter 3. Thus, in order to 
secure the mutual trust and accountability necessary for developers, who may 
or may not have met each other in person, to be able to change and affect each 
other’s systems, a central part of becoming a Debian or Ubuntu developer is 
having the requirement for an applicant to meet an approved developer in-
person so that he can verify the applicant's identity and digitally sign his 
personal PGP key – a digital cryptographic key for signing and encrypting 
data, thus associating it with the official identity of the developer. I asked 
Ubuntu developer Martin what it means to sign a key:

Andreas: So how well do you know these people that you've signed keys 
with?
Martin: Mostly not at all. That's not the important thing about 
keysigning. For keysigning, the important thing is that whenever you sign 
someone else's key that you have to be absolutely sure that the name that 
is stated on the key belongs to the person that you have exchanged your 
identity cards with and so on. So it doesn't mean at all that you have to 
trust this person, you just have to trust this key.
Andreas: That's curious.
Martin: Yeah, this is why you can be relatively liberal in who you sign 
keys with. I mean, getting signatures from other people is of course fine, 
you can accept them happily, you just have to make sure not to screw up 
signing someone else's key. ... This is basically your network identity in 
such communities so it is very important to have those virtual passports.

In this way, trust, as created through the signing of PGP keys, does not mean 
trusting the person or the software they upload, but rather trusting that their 
on-line identity matches one that is officially authenticated, creating a purely 
technical verification of identity. In both the Debian and Ubuntu communities, 
it is considered extremely important that all of its members are connected in a 
web of trust in which each developer's identity has been verified by other 

119



developers so that a path of trust can be found from any one member to any 
other in order to guarantee the identity, accountability, and responsibility of 
each developer involved.38 
As Christopher Kelty notes, such a decentralised web of trust is remarkably 
totalising in that there are no strangers or middlemen possible in such a 
system: People with no key are just as untrustable as people who sign with 
untrusted keys (Kelty 2005c:139). Because of this, it is only once this 
technical trust has been established that social trust can be built by examining 
the work which a developer has signed with that key thereby taking credit and 
responsibility for it. Exceptions to this rule are developers who get their work 
reviewed and sponsored by already approved developers, such as the case 
with Michael reviewing and uploading Sebastian’s work. But as noted in 
chapter 3, this depends on the personal communication between two 
developers, rather than the free access to change the system as granted with 
core developer membership.

38 This works through the famous “six degrees of separation” model, where the hackers can 
use algorithms to prove that every developer has met and verified the identity of at least 
one other developer, who in turn has met at least one other developer, and so on, until 
every developer is connected in an intricate web of trust.

120



Though individual key-signings occur, and some hackers indeed collect key 
signatures much like how others would collect autographs, most key signings 
take place at big key signing parties at conferences such as the Ubuntu 
Developer Summits described in chapter 3 (cf. Illustration 13). Therefore, 

121

Illustration 13: A typical scene from a keysigning party. Each hacker brings his  
passport and a list of all the PGP keys he expects to sign at the signing. The  
hackers then divide up into two rows which file past one another, verifying in-
person identities and matching them to the PGP keys as they go (picture taken by  
Noirin Plunkett at ApacheCon 2006. Available at  
http://flickr.com/photos/noirin/177599802/)



signing PGP keys is a central point of overlap between the hackers' in-person 
and on-line identities where these identities are ritually and reciprocally 
matched and confirmed by the hackers present.

Communicating through changes
Whenever a Ubuntu hacker uploads a change to the system, he notes the 
change in the system change log – a central listing in which the developers 
register all of the changes to the system – and signs it with their individual 
PGP key to associate that change with their on-line identity. A typical 
changelog entry reads:

Accepted:
bluez-utils 3.7-1ubuntu4 was ACCEPTED.
        Component: main Section: admin

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Format: 1.7
Date: Fri, 20 Oct 2006 17:47:23 +0200
Source: bluez-utils
Binary: bluez-pcmcia-support bluetooth bluez-cups bluez-utils
Architecture: source
Version: 3.7-1ubuntu4
Distribution: edgy
Urgency: low
Maintainer: Debian Bluetooth Maintainers <pkg-bluetooth-
maintainers at lists.alioth.debian.org>
Changed-By: Daniel Holbach <daniel.holbach at ubuntu.com>
Description: 
 bluetooth  - Bluetooth stack utilities
 bluez-cups - Bluetooth printer driver for CUPS
 bluez-pcmcia-support - PCMCIA support files for BlueZ 2.0 
Bluetooth tools
 bluez-utils - Bluetooth tools and daemons
Changes: 
 bluez-utils (3.7-1ubuntu4) edgy; urgency=low
   * debian/bluez-utils.bluetooth.init:
     - pass -- $HCID_OPTIONS to 'restart' too, not only to 
'start' (Malone:
       #67169), thanks James Henstridge <james.henstridge at 
canonical.com> for finding out.
Files: 
 c3e11b4ae9b41c3942d32ce25f294c67 873 admin optional bluez-
utils_3.7-1ubuntu4.dsc
 9eb29248da63a33f80e38fda8e725bb6 24705 admin optional bluez-
utils_3.7-1ubuntu4.diff.gz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.3 (GNU/Linux)

122

https://lists.ubuntu.com/mailman/listinfo/edgy-changes
https://lists.ubuntu.com/mailman/listinfo/edgy-changes
https://lists.ubuntu.com/mailman/listinfo/edgy-changes
https://lists.ubuntu.com/mailman/listinfo/edgy-changes
https://lists.ubuntu.com/mailman/listinfo/edgy-changes


iD8DBQFFOPBYr3O2CKlAUK8RAoUwAJ9ZokQCufA38l2OaZb2BINh41aRNACeI
/oi
tw1a8E/W+GyK+fITYh8SRDU==UUOu
-----END PGP SIGNATURE-----

In this mess of contexual data showing the exact version of the package and 
the files being altered, the main message is that the change has been accepted 
into the system archive. Acceptance is given based on the fact that the upload 
is associated with the name of a trusted Ubuntu developer (cf. the final lines 
labelled “PGP Signature”), who thus takes personal responsibility for the 
change, which is described under the field “Changes” containing a review of 
what necessitated a new upload. In this case, the change was to fix a bug, with 
the relevant bug registration number in the bug tracker included for reference. 
It also acknowledges the hacker who first called attention to the issue who 
otherwise wouldn’t receive credit for his work as it is incorporated in an 
upload signed by another developer. Thus, at this system-wide level, the 
Ubuntu hackers communicate their work by changing the system directly, 
thereby letting their actions and changes to the system tell of themselves. This 
corresponds well with the way the Ubuntu hackers' discussions on IRC and 
mailing lists generally focus on how to do things – the asking for second 
opinions and review mentioned above – rather than on which things should be 
done, as I showed in my discussion of the hackers' mutual engagement in 
chapter 3.
The new media theorist Mark Elliott calls this kind of collaboration 
"Stigmergic collaboration", borrowing a term from zoologist Pierre-Paul 
Grassé who first coined the term in the 1950s to describe the way termites 
interact by modifying their nest environment and reacting to such changes 
(Elliott 2006:1). 
Elliott argues that human stigmergic collaboration has become possible 
through digital means, as it makes it possible to sidestep social negotiation, 
making it instantly possible for hundreds of developers to contribute and 
collaborate without having to get acquainted and maintain relationships with 
one another (Ibid.3). Elliott uses the on-line user-edited encyclopedia 
Wikipedia as his main case study for stigmergic collaboration, and it fits very 
well with his description as it allows all users to edit any article as they 
please, since it is easily possible to revert any change to a previous version as 

123



needed. In the case of Ubuntu, I find that it is perfectly possible for any user 
to write bug reports and translation suggestions without any prior 
involvement or social negotiation, but since changing the system carries the 
potential risk of breaking all of the inter-connected Ubuntu systems – as 
opposed to merely displaying incorrect information in the case of Wikipedia – 
each Ubuntu developer needs to have acquired the formal trust of the 
community through direct approval from the technical board in order to be 
able to actively change the system.
Thus, stigmergic development is driven by an awareness that every change 
you upload affects the entire system. Not only an immense responsibility, it is 
a very empowering position, as it allows you to fix a problem that has been 
bothering you, not only for yourself, but for everybody else who might 
encounter the same problem. As Ubuntu hacker Martin explains:

And I think that this thing [maintaining a high-profile software package in 
Debian and Ubuntu] mainly [...] taught me that people actually rely on the 
work I do. So whenever I screwed up and did a bug in the new version and 
then people who upgraded this said "hey, you just broke my installation" 
and so on. This really got me the feeling that everything I do is actually 
used outside there.... and it is important and people are relying on it...

This indirect social connection through the use and development of the 
system is central to Ubuntu hacker sociality. Since the system is shared and 
developed among several hundred hackers with access to change it, each of 
them come to depend on and trust that the developers are responsible enough 
only to make beneficial and well-considered changes to the packages they 
use. 
In this way, the Ubuntu hackers maintain a communal regime of mutual 
accountability, aware of the responsibility they hold, as well as ready to let 
others know when their changes break each other’s carefully configured 
system. As Ubuntu hacker Paul succinctly puts it, "You get a good reputation 
by doing stuff without fucking up."
Since the hackers' collaboration lacks any more telling and personal ways of 

124



displaying ability and status, trust and reputation is built from the changelogs, 
associated with that developer's name and confirmed through his digital 
signature. In this way, it is the hacker's on-line identity itself, verified, 
approved and directly associated with all his work on-line, which becomes the 
focus of his on-line reputation.
As Eric Raymond has noted, one of the few taboos in the free software 
communities is altering change logs and taking credit for other people's work 
(Raymond 1998), much like how scientists are expected to use citations to 
acknowledge prior work in their field. Indeed, Christopher Kelty has 
compared the number of times scientists are cited in the Science Citation 
Index as a marker of peer recognition similar to hackers' greputation – that is, 
the number of times their name appears in the changelogs of a given project 
when searched for and filtered through the command line tool called grep 
(Kelty 2005b). Though somewhat simplistic, the amount of recognised and 
approved work one has done, as well as how willing others are to base their 
own work upon it, is at least to some degree an indication of the level of trust 
one's peers, whether hackers or scientists, extend to you.39

Breaking the users’ trust
This trustful stigmergic collaboration does breakdown from time to time, as 
the developers upload changes which introduce new bugs to the system. But 
since most of such disruptive changes occur in the development version of 
Ubuntu where such disruptions is expected, it does not affect the main body 
of users who use the stable versions of Ubuntu. During my fieldwork, I 
witnessed only one instance of a hacker uploading a disruptive change to one 
of the stable versions of Ubuntu, which broke the X Window System, the 
software driving Ubuntu’s graphical user interface, for the thousands of users 
who installed that update during the 17 hours that it was in the archive, 
leaving them  with nothing but the command line and its unforgiving demand 
for technical knowledge. The reaction to this lapse in trust was an immediate 

39 Whereas Raymond uses this discussion to argue that free software communities are gift 
economies focused on the exchange and maximising of personal reputation rather than 
any monetary value, Kelty refutes this by arguing that though both scientific citations and 
greputation can be considered values of reputation, neither citations nor changelog entries 
are necessarily positive. The change or citation is registered even if people use it to refute 
your scientific argument or revert your changes. 

125



disappointed outrage among Ubuntu users on web forums, blogs and mailing 
lists, including many stories such as this:

You want to know why I'm so angry at this? I just spent all last weekend 
installing a fresh copy and configuring ubuntu to how I like it. Everything 
was going great. I was grinning from ear to ear. Then this morning, the 
update light comes on […] I installed it as i'm sure most would only to 
reboot this afternoon and find a pear-shaped xserver-xorg [the software 
package containing the core elements of the X system].
This is one of the reasons I'm so angry at this. The other is how could 
"they" let this massive BALLS UP go live...?

These users invested their trust in the stable Ubuntu system, adopting and 
customising it in the same manner as the Ubuntu developers. But unlike the 
Ubuntu developers, they did not have the technical skills to fix the issue 
themselves, nor had they expected to be forced to, and the result was a deep 
sense of broken trust which was frustrated even more by the fact that few of 
the users knew the means through which the Ubuntu developers build and 
maintain their reputation, and thus realised that they had no concrete group to 
blame or direct their complaints at, only a vague, faceless “they.”
By chance, the upload took place while I was at a week's development sprint 
with the Canonical-employed Ubuntu developers in Wiesbaden, making it 
possible for me to see the flustered faces of the developers as they realized the 
mistake. And though tension was high, it was soon deflated as the hackers sat 
together and discussed the matter in-person. They found that it had been a 
comedy of errors which had led to the incident: A bad update, a bad review of 
that update before uploading it, a bad decision not to use the test 
infrastructure available, and a problem with the archive which let the update 
stay on-line for 17 hours before it could be replaced with a better version. 
Working quickly under the watchful eye of their employer, the hackers soon 
had the update removed as well as instructions on to how fix the system and 
the relevant apologies and promises posted on the Ubuntu website for all 
users to read. 
That work done, Mark Shuttleworth asked the hackers to close their laptops, 
thus demanding their full attention, in order to discuss the lessons they were 
to learn from this incident. He reminded them of the great responsibility under 
which they work, as their work affects millions of users around the world. 

126



Stating that “this is about becoming professional”, he underlined how their 
work is no longer some part-time hobby project, but an ambitious project that 
the users need to be able to trust. Following the meeting he communicated the 
same message from his much publicised personal blog under the headline 
“One on the chin”: 

This gave us the opportunity not just to analyse and fix the issue, and to 
talk about the sequence of events that led to the problem, but also to 
discuss the processes we must improve to further reduce the likelihood of 
a repeat. The team is now more aware than ever of the responsibility we 
assume given the extraordinary rate of adoption of Ubuntu.

My goal is for the team to grow and learn from this experience without 
becoming paralyzed on future updates. We can’t afford to take risks with 
our users’ trust, but I balance that with the need to continue to improve 
the desktop.
(Shuttleworth 2006)

With this, Shuttleworth strikes upon a central theme in how the Ubuntu 
system links the relatively few, highly capable Ubuntu hackers to the millions 
of Ubuntu users: That the formalised mutual trust built among the small group 
of core developers extends well beyond the people contributing actively to 
Ubuntu, to all of those users who also dwell within and depend upon the 
Ubuntu system. 
As I argued in chapter 4, a central aspect of the developers’ personal 
motivation to work on Ubuntu is to connect socially with the users of their 
software: to win appreciation for the work they do, to be inspired to new 
features for the software and solve bugs, and to spread the dogmas of free 
software. This collaborative work is built through the shared use of the 
Ubuntu system which makes it easily possible for users to shape the system, 
should they take an active interest in learning how to do so. In this way, all of 
the work within the eco-system of Ubuntu depends on maintaining this 
extended trust. Not merely by building a system that works just for the 
individual hacker, but to keep the entire Ubuntu system usable for everybody 
in order to win over new users. 
As the leader of the project, it falls to Mark Shuttleworth to take 
responsibility and guarantee the mutual accountability through which this 

127



trust is built, and to be the public face of the community of Ubuntu developers 
in crises such as the one described here.

Hacker big-man governance and meritocracy
As the Norwegian anthropologist Lars Risan has noted, the kind of political 
authority that free software project leaders come to possess is remarkably 
similar to the authority of Melanesian big-men as described by Marshall 
Sahlins (Risan unpublished, Sahlins 1963). The authority of the Melanesian 
big-man is personal, it is not a political position into which one can be 
elected. Rather, it is attained "through a series of acts which elevate a person 
above the common herd and attract about him a coterie of loyal, lesser men" 
(Sahlins 1963:289). Such acts can be shows of skill - of magical powers, of 
oratorical style, of bravery in war – but perhaps most decisively is his ability 
to amass and distribute goods among his followers, winning their trust 
through selfless reciprocity (ibid. 291). Similarly, free software big-men such 
as Linus Torvalds attract followers by freely giving away their work, 

128



garnering respect and building digital greputation trust through the quality of 
their efforts. 
Typically, such big-men are the founders of new projects that draw in 
contributors with social values of their work, and the scope of the vision that 
drives them. Noting this, it is remarkable how often the personality and 
motivations of these big-men come to define, and even to some degree 
personify, the projects they lead.40

This is very much the case with Mark Shuttleworth and the Ubuntu project, 
which he founded and funded from the beginning. His role as leader of the 
project is clearly stated on the Ubuntu homepage describing the details of 
Ubuntu governance:

This is not a democracy, it's a meritocracy. We try to operate more on 
consensus than on votes, seeking agreement from the people who will 
have to do the work. Mark Shuttleworth, as SABDFL [Self-Appointed 
Benevolent Dictator For Life], plays a happily undemocratic role as 
sponsor of the project. He has the ability, with regard to Canonical 

40 The Big-men leaders even represent the motivations of the contributors themselves to 
some degree. For instance, comparing to the three main motivational factors described in 
chapter 4, the Linux kernel project led and managed by Linus Torvalds is still dominated 
by his initial motivation of sharing an exciting technical challenge with other hackers. The 
GNU project is still dominated by Richard Stallman's unrelenting ethical dedication to the 
dogmas of free software. And the qmail and djbdns software projects are still led, 
developed and maintained solely by hacker and computer scientist Daniel J. Bernstein 
whose insistence on maintaining the high quality of his work has led him to license his 
software under terms that do not allow nobody else to distribute modified versions of his 
code, winning him not contributors to his project, but rather fans of his style. 
It is worth noting that a handful of central free software projects such as Apache, 
FreeBSD, and Debian do not have these types of charismatic, big-men leaders but have 
vested power in various modes of community governance such as councils, annual 
elections or boards.

129



employees, to ask people to work on specific projects, specific feature 
goals, and specific bugs. 

[...] In many cases, there is no one "right" answer, and what is needed is a 
decision more than a debate. The SABDFL should act to provide clear 
leadership on difficult issues, and set the pace for the project. 

It is understood that the divisive use of the SABDFL's authority could 
weaken the project. For that reason the authority is used carefully, in the 
hope that it will create momentum in the best direction for the project, 
breaking stalemates where otherwise competing views would fail to reach 
consensus.

In officially defining the Ubuntu community as a meritocracy based on each 
individual developers' contribution to the project, Mark Shuttleworth has 
opened the project to community involvement, but he has also secured his 
own power base as project leader by employing 25 highly capable core 
Ubuntu developers to work full-time on the project, investing much more 
time in shaping the system and winning more influence than any group of 
hobbyist contributors.41 And while the employed Ubuntu developers certainly 
still have strong personal interests in their free software work, they have 
essentially sold their work and thus their political influence on the project to 
their employer. And since they would have to quit their jobs in order to shape 
the project directly against Shuttleworth’s instructions, they are limited to the 
try to persuade him to change his mind.42 
In this way, Shuttleworth has found a new way of winning influence by using 
his wealth to build his authority within Ubuntu rather than through a 
reputation built through the quality of his work, which is markedly different 
from most other free software projects. For though his hacking credentials are 
generally accepted, Shuttleworth rarely, if ever, contributes code to Ubuntu, 
instead preferring a role as “benevolent dictator”, delegating tasks and 

41 This is supported by my quantitative on-line survey and my general impressions from my 
in-person fieldwork that many of the most active free software developers are students,  
academics or paid developers. as these are the people who are in a position to devote 
much time to free software development, but also to take the time to travel to hacker 
conferences around the world to socialize and build the in-person social relationships 
which are so crucial in the long-term development of free software.

42 Several of the Canonical-employed Ubuntu developers humorously called this practice for 
“Mark-steering” – that is the subtle hinting and leading the SABDFL to certain 
conclusions based on their own ideas and their knowledge of his interests.

130



representing the project publically. He seeks to confirm his decisions as often 
as possible through the Technical Board and the Community Council, the two 
main governance bodies of the Ubuntu project, the members of which are 
among the most respected and well-reputed Ubuntu hackers who act as a sort 
of tribal elders, helping to define the technical and communal direction of the 
project through Shuttleworth’s reciprocal authority (rather than his authority 
as an employer, even though most of the initial members of both bodies were 
employed by Canonical).
But as the crisis case described above shows, Mark Shuttleworth's leadership 
of the Ubuntu community is not merely dependent on his using his wealth to 
employ developers, sponsoring contributors to come to conferences, and send 
free CDs to anyone interested. It is just as much dependent on his ability to 
represent a coherent ethos as a benevolent, responsible big-man, which the 
members of the Ubuntu community – full-time employees and hobbyists alike 
– can trust and approve of, and which the millions of users of the Ubuntu 
system feel that they can depend upon. They all look to him to ensure an 
ambitious vision is planned and realised for the project, one which they can 
approve of, and which they feel they can help shape – in which regard he is 
exactly like other free software big-men.
Much like the Melanesian big-men described by Sahlins, Shuttleworth wins 
the trust and approval of the bigger community of users by offering them a 
system that is both gratis and libre. And for which he is willing to take 
responsibility and reciprocate the trust of the contributors by constantly 
reaffirming their freedom to use and contribute to the system as they please. 
By letting the Ubuntu hobbyist hackers stigmergically shape the system, 
deriving from the core Ubuntu system as they see fit to make new versions 
specialised for their needs (naturally, the employed hackers are not given 
similar freedom) and following the suggestions of the community’s most 
respected hackers, Shuttleworth embraces the reciprocity through which he 
came into this position of authority in the first place, building trust in his 
ethos and his long-term vision of the world domination of free software.

Conclusions
In this chapter, I have explored how the Ubuntu hackers negotiate and take 
responsibility for their shared work on a system-wide scale, spanning all of 

131



the more than 19.000 software packages that make up the detailed complexity 
of the Ubuntu system. Using Matt Elliott’s concept of stigmergic 
collaboration I have argued that the Ubuntu developers rarely coordinate their 
changes to the system beforehand, but rather communicate directly by 
changing the system, which the hackers dwelling within that version of the 
Ubuntu system will experience directly as a change in their environment. This 
empowered collaboration depends on cultivation of a mutual accountability 
through a reciprocal trust built and reinforced through interdependent layers 
of decentralised and centralised means: Decentralised in the individual, yet 
shared use and dwelling within the system, the web-of-trust verification of 
identity through PGP key cryptography, the formal legal trust in the GPL 
license which allows each hacker to modify and control his system in every 
detail, and by extension the open, stigmergic collaboration through which the 
hackers can build their personal reputation, as has been described by 
Christopher Kelty. Trust in the project is centralised around the reciprocal 
governance of Mark Shuttleworth and the respected and well-reputed hackers 
of the Community Council and the Technical Board in a manner similar to 
Marshall Sahlins’ description of the rule of Melanesian big-men. It is these 
leaders who grant new Ubuntu developers access to change the system based 
on an experienced examination of each hackers' ability and judgment; and 
who determine the goals and deadlines for each new release at the in-person 
conferences, which allow the Ubuntu hackers to create social ties of greater 
depth than is possible on-line. All of these goals are summed up in the ethos 
and vision of Mark Shuttleworth, inspiring the project's direction and seeking 
to match and enroll the interests of each individual Ubuntu contributor in the 
project. All of these means of trust are connected through the Ubuntu hackers’ 
shared history of learning to dwell and continually build and trust the Ubuntu 
system itself – practices which are at the core of their community. 
I argue that it is through this legitimate, yet at first rarely intentional, 
participation at the periphery of the Ubuntu community of practice, that new 
contributors find their way into that shared history of learning. As Etienne 
Wenger puts it, “we create ways of participating in a practice in the very 
process of contributing to making that practice what it is” (Wenger 1998:96). 
It is in the winning and maintaining of this reciprocal trust between users and 
developers that the complexity of the Ubuntu system is managed and tested in 

132



times of crisis, and which in turn comes to shape the way the system is 
developed and used.

133



Conclusion

Unfolding the Ubuntu system

A hacker folklore dictum has it that an organization building a computer 
system is bound to produce designs resembling the organization itself, since 
the way the different parts of the system interact with one another reflects the 
social relations between the developers working on those different parts. This 
is known as Conway’s Law, named after the programmer who first made the 
observation (Conway 1968).
Here I have sought to unfold the transparent white box of the Ubuntu system 
by exploring how the Ubuntu hackers relate to it in their individual and 
collaborative day-to-day practices, and I find myself agreeing with Conway’s 
more than almost 40-year-old second-order observation. 
With its more than 19.000 modular software packages integrating the work of 
thousands of free software projects within the same system, the Ubuntu 
system reflects how the Ubuntu hackers distributed across world can 
collaborate according to their interests and abilities in a community of 
practice centered around their use and configuration of the system – both as a 
shared goal and as a work environment of their own: With each new version 
of Ubuntu, every part of the system is revisited and challenged anew in the 
continuing work to maintain the system. Thus, the Ubuntu system remains 
unfinished – an unsealed box which has been developed through 40 years 
“oral” academic hacker tradition based on the Unix operating system. It is 
built to meet the constant technical challenge of every hacker who happens 
upon it. A city continuously being rebuilt, an oak tree sprouting new branches. 
All to meet the ever-changing needs of its inhabitants. This cumulatively 
improved Ubuntu system is part of a lively interdependent “eco-system” built 
on the reciprocal sharing of knowledge and source code which through its 
open on-line development and cleverly crafted copyright licenses has become 
a viable

134



135

Illustration 14: Unfolding the white box of the Ubuntu system to find it full of traces of shared  
practice: Discussions, collaborations, tools, trust, old disagreements, new goals, traditions  
and social occasions. These practices come to shape the source code of the system itself  
through the Ubuntu hackers' daily collaboration and continuous interdependence.



alternative to the mainstream IT industry. A fact which the Ubuntu hackers 
themselves have been among the first to recognise through their ambitious 
goal of breaking Microsoft’s monopoly on computer operating systems and 
winning World Domination for free software. 

The Ubuntu community of practice
By following Bruno Latour’s methodology of unfolding the network of 
practices, processes and actors through which the Ubuntu system has been 
constructed, I have sought to break away from the focus on the political, 
ethical and economic implications of free software development which has 
drawn the attention of most of the anthropologists working in the field, and 
instead explore the everyday work and socialising of a fairly well-defined 
grouping of free software hackers over a longer fieldwork period. Based on 
this fieldwork, I have inductively posited the Ubuntu hackers’ collaborative 
practices and relations to the Ubuntu system as a community of practice 
sharing the three main dimensions of relation through which Etienne Wenger 
suggests that a community of practice is defined: Joint enterprise, mutual 
engagement and shared repertoire.
Each hacker has different personal motivations for their involvement in the 
joint enterprise for world domination, most of these tending to be centered 
around the fascination of learning the details of technology, enjoying working 
together on technical challenges, and sharing an ethical commitment to write 
software that can be shared freely for the benefit of others. Following Alfred 
Gell’s theories, I have argued that these diverse interests are reflected in every 
little part of the system and results in constant negotiations of the details of 
how to realise their joint enterprise of furthering free software. 
They work towards this goal by building a mutual engagement in their 
complementary practice between what Lévi-Strauss calls engineer work and 
bricolage: Both visualising and designing new features as well as redesigning 
and reimplementing odd bits of left-behind work to fit their needs through a 
haphazard extending, fixing, fussing and testing. This engagement enables 
them to learn from on another by collaborating, discussing, sharing their 
work, and helping each other both on-line and in-person. 

136



customization of the Ubuntu system – the shared built environment, which 
they adopt as their own in which to dwell - in Tim Ingold’s terminology. 
Through this dwelling  the system affords the hackers’ work to such an extent 
that it becomes an extension of the hacker’s mind, as suggested by Clark & 
Chalmers, thus becoming the all-encompassing means for their hacking work. 
The hackers communicate by changing their shared environment directly, in 
what Matt Elliott calls a stigmergic fashion, continuously building the system, 
sedimenting and stabilising it for others to use as well. This empowered 
collaboration rests on the cultivation of a mutual accountability through a 
reciprocal trust built and reinforced both through the individual, yet shared 
dwelling within the system, the hackers’ personal on-line reputations built 
through technical and cryptographic means, and in the reciprocal governance 
of the respected and well-reputed hackers leading the project in a manner 
similar to Marshall Sahlins’ description of the rule of Melanesian big-men. 
This community of practice, and the mutual trust which holds it together, is 
built through the hackers’ shared history of learning to dwell and build within 
Ubuntu system, making it their own, and through coming to trust and 
collaborate with the other users dwelling there, keeping the door open for new 
contributors to enter and learn among them. In this way, the Ubuntu hackers 
come to share more than just the same system, they come to share a common 
history, and to a certain extent, a shared identity through their work. As 
Etienne Wenger concludes, “Communities of practice are more than purely 
instrumental purposes. They are about knowing, but also about being together, 
living meaningfully, developing a satisfying identity, and being altogether 
human” (Wenger 1998:134). 
In this way, Conway’s insight applies doubly to the relationship between the 
Ubuntu system and the developers working on it: Not only does the social 
organization of the Ubuntu hackers reflect the technical structure of the 
system, in turn, the system is shaping the practices and identity of the hackers 
who come to adopt and work on it through the reciprocal trust and passion for 
technology with which they continue to build it. Thus, when the Ubuntu 
individual Ubuntu hacker works to build “a system that works for me,” his 
work is reflected not only in his own system, but in the system as a whole, as 
well as the shared practices through which it comes to be.

137



Implications of theories and methods on the analysis
I came to take part in this shared history of learning from the moment I first 
loaded the Ubuntu system on my computer. At first by using the system and 
learning to configure it to my needs, I came to dwell there in a manner 
somewhat similar to the hackers I interviewed. In this dwelling and learning, 
along with my active participation in contributing to the system, I took part in 
the core practices of the Ubuntu community. 
I have sought to use my own experiences with the system as a basis to make 
sense of my discussions and interpretations of the Ubuntu hackers’own, more 
sophisticated, work with the system. The central part of my fieldwork data 
consists of the correlation of these two perspectives that form a coherent 
picture of the sum of relations extending from the Ubuntu system. In 
inductively building on these observations to pair the Ubuntu hackers’ 
practices with Etienne Wenger’s theoretical framework, I have come to rely 
on these correlations for my analysis. Yet they reflect to a much greater extent 
the Ubuntu hackers’ mastery of the system that is so central to their practice 
than my learning experience of coming into that community. I haven’t fully 
touched upon my initial frustrations at being unable to appreciate the 
technical details of the hacking work and my miscomprehensions of the 
nature of the Ubuntu hackers’ online collaborations, which were only slowly 
dispelled as I learned more of the system and the hackers’ shared practices. It 
wasn’t until I was able to meet the hackers in person at the Ubuntu Developer 
Summit, after two months of fieldwork that I finally began to feel that I could 
connect socially with the Ubuntu hackers.
In building my argument around Wenger’s somewhat totalising framework, I 
have limited my analysis to the Ubuntu hackers’ collaborative practices, 
making it impossible for me to delve further into how power is attained and 
bigger conflicts are resolved through on-line political discussion and 
argumentation through technology, as has been explored by Gabriella 
Coleman and Christopher Kelty in other ethnographic contexts. Furthermore, 
by positing the Ubuntu community as a community of practice, I have 
focused on the social aspect of the Ubuntu hackers’ practices, in part because 
the social interactions between the hackers were easier to examine and discuss 
with them. But even so, individual learning remains a big part of coming into 
the Ubuntu community, as there are many texts to be read, and skills to be 

138



learned on your own before you can begin to contribute. And even though 
there are people willing to help, the gap left by the on-line lack of tactile 
“showing how” to do a task can only be bridged by individual ardour.

Perspectives for wider application and future research
It is my impression that many other free software communities share many of 
the characteristics of the Ubuntu hackers’ practices I have described. But 
because of my inductive approach, I cannot generalise on this, though it may 
indeed turn out that the community of practice around the Ubuntu community 
is part of what information theorists Paul Duguid and John Seely Brown, 
extending on Wenger’s concept, call a “network of practice” around the open 
development of free software. Such networks consist of more or less 
disconnected communities which all share a similar practice, but which to 
some extent are marked by different goals and histories, and shared 
repertoires of tools and routines (Seely Brown & Duguid 2000:141). 
If the free software communities indeed share similar collaborative practices 
to a greater extent, then many of my conclusions here can be tested in the 
many similar projects within the free software eco-system. As one hacker 
said, “we are your fruitflies” – perhaps this is a way to examine to what extent 
this statement is true. 
The Ubuntu community of practice appears to be the kind of informal and 
empowered learning and creative space that offers what Eric von Hippel has 
called a "democratization of innovation" (von Hippel 2005) where the 
development of new ideas and designs is displaced from inside the individual 
companies to wider networks of interested and capable users collaborating for 
a common interest - in this case the shared system. 
To further examine this, it would be necessary to focus further on the role of 
Canonical within the Ubuntu community, since the company plays a huge part 
in the development of Ubuntu – both in the building of the Launchpad 
infrastructure, the sponsoring of the Ubuntu Developer Summits, and the 
employment of many of the core Ubuntu developers. Canonical's distributed 
organization with developers in more than 20 countries is an attempt to 
synthesize the open model of development of the free software communities 
with the closed model of development of the mainstream IT industry to create 
a community that can harness the energy and passion of interested developers 

139



- both employed and volunteer - working with a common interest in 
furthering the cumulative "idea treasure" of free software. 
To me, the central discovery of this thesis has been uncovering to some extent 
the manner in which the Ubuntu hackers come to learn, work, and manage 
their knowledge on-line. For while the system indeed is guaranteed by 
copyright licenses and reciprocal leadership to remain a white box that is 
transparently open for adoption and modification, other barriers to 
membership in the community, such as class, gender and depth of technical 
knowledge still remain. Perhaps most of all, as Gabriella Coleman suggests, 
because no elegant technical solution to these problems exist (Coleman 
2004:517-518). 
As I have argued here, it is through opening the system to new users and 
engaging them in the joint enterprise of the community that they will come to 
dwell and learn within the system. Exploring the details of how this learning 
process comes about and works within the free software communities of 
practice such as Ubuntu and their specialized technical infrastructure will be a 
good choice for further study. 

140



References cited

Juan-José Amor-Iglesias, Jesús González-Barahona, Gregorio Robles-Martínez & Israel 
Herráiz-Tabernero: 

2005 “Measuring Libre Software Using Debian 3.1 (Sarge) as A 
Case Study: Preliminary Results ” in Upgrade – The 
European Journal for the Informatics Professional, Vol. VI, 
Issue 3, June 2005.

Michael Banck: 
2004 “The Ubuntu Development Model” (2004). accessed at 

http://www.advogato.org/person/mbanck/diary.html?start=24 
on June 6th, 2007.

Maurice Black: 
2002 The Art of Code - PhD. Dissertation, University of 

Pennsylvania 2002.

Frederick P. Brooks: 
1995 The Mythical Man-Month. (Boston: Addison-Wesley 1995 

[1975])

Manuel Castells:
2001 The Internet Galaxy: reflections on the Internet, Business  

and Society. (Oxford: Blackwell, 2001)

Andy Clark & David J. Chalmers:
1998 “The Extended Mind” in: Analysis 58, 1998. pp. 10-23.

Gabriella Coleman: 
2004 “The Political Agnosticism of Free and Open Source 

Software and the Inadvertent Politics of Contrast” in: 
Anthropological Quarterly 77(3) Summer 2004.

2005 The social construction of Freedom in Free and Open  
Source Software: Hackers, Ethics and the LiberalTradition. 
PhD. Dissertation, University of Chicago 2005.

Melvin E. Conway:

141

http://www.advogato.org/person/mbanck/diary.html?start=24


April, 1968. Accessed at 
http://www.melconway.com/research/committees.html on 
June 20th, 2007.

Mihali Csikszentmihalyi:
2002 Flow – The Classic Work on how to achieve happiness. 

(London: Rider, 2002 [1992]).

Chris DiBona: 
1999 Open Sources: Voices from the Open Source Revolution. 

(Sebastopol CA:O'Reilly 1999)

Matt Elliott: 
2006 “Stigmergic Collaboration: The Evolution of Group Work” 

in: M/C: A Journal of Media and Culture, vol. 9, issue 2, 
May 2006.

Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani:
2005 “Introduction” in: Joseph Feller, Brian Fitzgerald, Scott A. 

Hissam, and Karim R. Lakhani (eds.): Perspectives on Free  
and Open Source Software, pp. xvii-xxxi (Cambridge, MA: 
MIT Press, 2005)

Karl Fogel: 
2005 Producing Open Source Software. (Sebastopol CA: O'Reilly, 

2005).

Bill Gates: 
1976 “Open Letter to Hobbyists” in: Homebrew Computer Club 

Newsletter, Volume 2, Issue 1, February 1976. Accessed at 
http://www.digibarn.com/collections/newsletters/homebrew/
V2_01/ on June 11th, 2007.

Alfred Gell:
1999 “The Technology of Enchantment and the Enchantment of 

Technology” in The Art of Anthropology: Essays and  
Diagrams pp. 159-186 (London: Berg Publishers 1999)

Rishab Aiyer Ghosh: 
2005a Measuring free software: Cooking-pot markets and balanced 

value flows, in: Rishab Ghosh (ed.): Collaboration,  
Ownership and the Digital Economy (Cambridge, MA: MIT 

142

http://www.digibarn.com/collections/newsletters/homebrew/V2_01/
http://www.digibarn.com/collections/newsletters/homebrew/V2_01/


Press, 2005)

2005b “Understanding free software developers: Findings from the 
floss study” in: Joseph Feller, Brian Fitzgerald, Scott A. 
Hissam, and Karim R. Lakhani (eds.): Perspectives on Free  
and Open Source Software, pp. 23-46 ( Cambridge, MA: 
MIT Press, 2005)

2006 “Sustaining a software ecosystem with FLOSS: skills and 
local economic growth” – Presentation of the results of the 
FLOSSPOLS (Free/Libre/Open Source Software: Policy 
Support) Project given at 7th Asia Open Source Symposium, 
Kuala Lumpur, Malaysia, March 7, 2006 accessed at 
http://flosspols.org/dissemination.php on June 17th, 2007.

Carlo Ginzburg:
1986 “Spor: Indicie-paradigmets rødder” in: Kultur og Klasser no. 

54, pp. 6-48.

Paul Graham: 
2004 Hackers & Painters (Sebastopol CA: O'Reilly, 2004).

Benjamin Mako Hill & Gabriella Coleman:
2004 “The Social Production of Ethics in Debian and Free 

Software Communities: Anthropological Lessons for 
Vocational Ethics.” In Stefan Koch (ed).: Free and Open 
Source Development (Hershey, Penn: Idea Group. 2004)

Benjamin Mako Hill, Jono Bacon, Corey Burger, Jonathan Jesse & Ivan Krstić:
2006  The Official Ubuntu Book (London: Prentice Hall, 2006).

Pekka Himanen: 
2001 The Hacker Ethic and the Spirit of the Information Age. 

(London: Vintage, Random House, 2001).

Eric von Hippel:
2005 Democratising Innovation (Cambridge, MA: MIT Press, 

2005).

Douglas Hofstadter: 
1979 Gödel, Escher, Bach: an Eternal Golden Braid (New York: 

Basic Books,1979). 

143

http://flosspols.org/dissemination.php


Tim Ingold: 
2000 The perception of the environment: essays on livelihood,  

dwelling and skill. London: Routledge, (2000) xvi, 454 pp.

The Jargon File (v.4.4.7 – updated October 2003) Accessed at 
http://www.catb.org/~esr/jargon/ on June 7th, 2007.

Alan Kay: 
1984 “Computer Software” in: Scientific American, 251(3):41--47, 

September 1984.

Christopher Kelty:
2002 “Hau To Do Things With Words” – Paper accepted for 

publication by the JAI Press quarterly series Knowledge and 
Society, but omitted from the final publication. Accessed at 
http://www.kelty.org/or/papers/Kelty.Hautodothings.2002.rtf 
on June 5th, 2007.

2003  “Qualitative Research in the Age of the Algorithm: New 
Challenges in Cultural Anthropology”, presentation given at 
RLG conference, May 2003. Transcription accessed at 
http://www.rlg.org/en/page.php?Page_ID=2201on June 7th, 
2007.

2004 "Culture's Open Sources" and "Punt to Culture" in 
Anthropological Quarterly 77(3) Summer 2004.

2005a "Geeks, Recursive Publics, and Social Imaginaries" in 
Cultural Anthropology 20.2 Summer 2005.

2005b “Free science,” in Joseph Feller, Brian Fitzgerald, Scott 
Hissam, Karim Lakhan (eds.): Perspectives on Free and  
Open Source Software. (Cambridge MA: MIT Press, 2005).

2005c “Trust among the Algorithms: ownership, identity and the 
collaborative stewardship of information,” in Rishab Ayer 
Ghosh (ed.): CODE: Collaborative Ownership in the Digital  
Economy (Cambridge, MA: MIT Press. 2005).

2006 “Emacs. Grep and UNIX: Authorship, Invention and 
Translation in Software” - unpublished presentation given at 

144

http://www.rlg.org/en/page.php?Page_ID=2201
http://www.kelty.org/or/papers/Kelty.Hautodothings.2002.rtf
http://www.catb.org/~esr/jargon/


Case Western Reserve University, Cleveland, OH, April 
2006.

Martin Krafft:
2005  The Debian System—Concepts and Techniques (Munich: 

Open Source Press, 2005)

Bernhard Krieger, Dawn Nafus & James Leach:
2006  “Gender: Integrated Report Findings” (2006). Report part of 

the Free/Libre/Open Source Software: Policy Support 
(FLOSSPOLS) Project at the Maastricht Economic and 
social Research and training centre on Innovation and 
Technology, accessed at http://flosspols.org/deliverables.php 
on June 17th, 2007.

Donald E. Knuth:
1992 “Computer Programming as an Art” in D.E. Knuth, Literate 

Programming (Stanford: Center for the Study of Language 
and Information, 1992), pp. 1-16.

Ko Kuwabara: 
2000 “Linux: A Bazaar at the Edge of Chaos” in: First Monday, 

volume 5, number 3 (March 2000). Accessed at 
http://firstmonday.org/issues/issue5_3/kuwabara/index.html 
on June 6th, 2007.

Bruno Latour: 
1987 Science in Action (Cambridge MA: Harvard University 

Press, 1987).

James Leach:
2005 “Modes of Creativity and the Register of Ownership” in: 

CODE – Collaborative Ownership and the Digital Economy 
(Cambridge, MA: MIT Press, 2005)

Lawrence Lessig:
1999 Code and Other Laws of Cyberspace. (New York: Basic 

Books. 1999)

2001 The Future of Ideas: The Fate of the Commons in a  
Connected World. (New York: Random House, 2001)

145

http://firstmonday.org/issues/issue5_3/kuwabara/index.html


 
2004 Free Culture: The Nature and Future of Creativity. (New 

York: Penguin Press, 2004)

Timothy Lethbridge, Susan Elliott Sim & Janice Singer: 
2005 “Studying Software Engineers: Data Collection Techniques 

for Software Field Studies” in Empirical Software 
Engineering Vol. 10, Issue 3 (July 2005) pp. 311 – 341.

Claude Lévi-Strauss: 
1994 Den vilde tanke (København: Samlerens Bogklub, 1994 

[1962])

Steven Levy: 
1994 Hackers – Heroes of the Computer Revolution (New York: 

Penguin Books, 1994 [1984]). 

Yuwei Lin: 
2004 Hacking Practices and Software Development: A Social  

Worlds Analysis of ICT Innovation and the Role of  
Free/Libre Open Source Software . PhD. Dissertation, 
University of York, 2004.

Geert Lovink and Ned Rossiter: 
2005 “Dawn of the Organized Networks” in Fibreculture Journal  

(2005). Accessed at  
http://journal.fibreculture.org/issue5/lovink_rossiter.html on 
June 6th, 2007.

Annette N. Markham: 
1998 Life online: researching real experience in virtual space  

(Lanham, MD: Altamira Press. 1998)

Martin Michlmayr & Anthony Senyard: 
2004 “How to Have a Successful Free Software Project” In: 

Proceedings of the 11th Asia-Pacific Software Engineering  
Conference, pp. 84-91, December 2004.  

Carolyn R. Miller:
2002 “Writing in a Culture of Simulation: Ethos Online” in Patrick 

Coppock (ed.): The Semiotics of Writing: Transdisciplinary  
Perspectives on the Technology of Writing (Turnhout, 

146

http://journal.fibreculture.org/issue5/lovink_rossiter.html


Belgium: Brepols Publishing, 2002), pp. 253-279.
Eben Moglen: 

1999 “Anarchism Triumphant: Free Software and the Death of 
Copyright” in: First Monday volume 4, number 8 (1999), 
accessed at 
http://firstmonday.org/issues/issue4_10/bezroukov/index.htm
l on June 6 2007.

Glyn Moody:
2001 Rebel Code – Linux and the Open Source Revolution. 

(London: Penguin Press, 2001)

Ole Møller Markussen:
2002 “The Humanly Mediated Computer Interview.” in Den Vilde 

Tanke No. 24 (October 2002), pp. 2-4.

Siobhan O'Mahoney:
2002 The Emergence of a New Commercial Actor: Community  

Managed Software Projects. Ph.D. dissertation, Stanford 
University 2002.

Gregers Pedersen: 
2006 “The gift of sharing” - paper disseminated in relation to 

presentation given at 23rd Chaos Communication Congress, 
Berlin 2006.

Matt Ratto:
2003 The Pressure of Openness: the hybrid work of Linux  

Free/Open Source kernel developers . Ph.D dissertation, 
University of California, San Diego 2003.

Eric S. Raymond:
1996 New Hacker's Dictionary (Eric Raymond ed.) (Cambridge 

MA: MIT Press, 1996) – see also Jargon File reference, 
above.

1997 “The Cathedral and the Bazaar”
- Accessed at http://www.catb.org/~esr/writings/cathedral-
bazaar/ on June 7th, 2007.

1998  “Homesteading the Noosphere” in: First Monday, volume 3, 
number 10 (1998) - Accessed at 

147

http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://firstmonday.org/issues/issue4_10/bezroukov/index.html
http://firstmonday.org/issues/issue4_10/bezroukov/index.html


http://www.firstmonday.org/issues/issue3_10/raymond/index.
html on June 6th, 2007.

2004 The Art of Unix Programming (Boston: Addison-Wesley, 
2004)

Joseph Reagle:
1999 “Why the Internet is good: community governance that 

works well.” Unpublished paper accessed at 
http://cyber.law.harvard.edu/people/reagle/regulation-
19990326.html on June 6th 2007.

2004 “Open content communities” in M/C: A Journal of Media  
and Culture, 7, July 2004. Accessed at http://journal.media-
culture.org.au/0406/06_Reagle.rft.php on June 6th, 2007.

Patrice Riemens:
2002  “Some thoughts on the idea of “Hacker Culture”” in: 

Cryptome (June 3rd, 2002) – Accessed at 
http://cryptome.org/hacker-idea.htm On June 6th 2007.

Lars Risan: 
Unpublished “Hackers produce more than software, they produce 

hackers” Paper disseminated on-line at 
http://folk.uio.no/lrisan/Linux/Identity_games/ - accessed 
there on June 6th 2007

2005 “Kodens sakramentale karisma — linuxsamfunnets 
gavekultur”  - presentation at the NETTVERK! SOSIALE – 
DIGITALE seminar at Oslo University on April 18th, 2005.

Marshall Sahlins: 
1963 “Poor Man, Rich Man, Big-Man, Chief: Political Types in 

Melanesia and Polynesia” in Comparative Studies in Society  
and History, 5, 1963. pp. 285-303.

1972 Stone Age Economics (Chicago: Aldine, 1972).

Peter Salus:
1994 A Quarter Century of Unix (Reading MA: Addison-Wesley, 

1994)

148

http://folk.uio.no/lrisan/Linux/Identity_games/
http://cryptome.org/hacker-idea.htm
http://journal.media-culture.org.au/0406/06_Reagle.rft.php
http://journal.media-culture.org.au/0406/06_Reagle.rft.php
http://cyber.law.harvard.edu/people/reagle/regulation-19990326.html
http://cyber.law.harvard.edu/people/reagle/regulation-19990326.html
http://www.firstmonday.org/issues/issue3_10/raymond/index.html
http://www.firstmonday.org/issues/issue3_10/raymond/index.html


John Seely Brown & Paul Duguid:
2000 The Social Life of Information (Boston MA: Harvard 

Business School Press, 2000)

Mark Shuttleworth:
2006 “One on the chin” – blog entry accessed at 

http://www.markshuttleworth.com/archives/54 on June 20th, 
2007.

Richard Stallman:
2002 “On Hacking” - article accessed at 

http://www.stallman.org/articles/on-hacking.html on June 
6th, 2007.

2005 “Copyright and Globalization in the Age of Computer 
Networks” in: Rishab Ghosh (ed.): Collaboration, 
Ownership and the Digital Economy (Cambridge, MA: 
MIT Press, 2005)

Neal Stephenson:
1999 In the Beginning was the Command Line. (New York: Avon 

Books, 1999).

Linda Stone: 
2006 “Attention: The *Real* Aphrodisiac” - presentation given at 

the Emerging Technology Conference 2006, audio recording 
of the presentation accessed at 
http://www.itconversations.com/shows/detail739.html on 
June 6th, 2007.

Ilkka Tuomi: 
2001 “Internet, Innovation, and Open Source: Actors in the 

Network” in: First Monday, volume 6, number 1 (January 
2001), accessed at 
http://firstmonday.org/issues/issue6_1/tuomi/index.html on 
June 6th, 2007.

Sherry Turkle:
1984 The Second Self – Computers and the Human Spirit (New 

York: Simon & Schuster, 1984).

149

http://firstmonday.org/issues/issue6_1/tuomi/index.html
http://www.itconversations.com/shows/detail739.html
http://www.stallman.org/articles/on-hacking.html
http://www.markshuttleworth.com/archives/54


Ellen Ullman: 
1995 “Out of Time: Reflections on the programming life” in: 

James Brook & Iain Boal (eds.): Resisting the Virtual Life 
(San Francisco: City Lights Publishers, 1995),  pp. 131-144.

Steven Weber: 
2004 The Success of Open Source (Cambridge: Harvard University 

Press, 2004)    

Gerald M. Weinberg: 
1971 The Psychology of Computer Programming (New York: Van 

Nostrand Reinhold, 1971).

Etienne Wenger:
1998 Communities of Practice: Learning, Meaning, and Identity 

(Cambridge: Cambridge University Press, 1998)

150


	Abstract
	Introduction
	Loading Ubuntu...
	The focus of the thesis
	Argument of the thesis
	Previous research on free software
	Methodology
	Structure of the thesis

	Chapter 2
	Tracing the cultural and technical roots of the Ubuntu system
	The personal computer and proprietary software
	Free software and the heritage of Unix
	The Linux open model of development
	Debian and the free software eco-system
	Ubuntu and the commercialization of Linux
	Ubuntu and Canonical
	Conclusions

	Chapter 3
	Hacking Synaptic 
	– a case study of the Ubuntu hackers' development work
	The Synaptic developers 1: Michael
	The Synaptic developers 2: Sebastian
	Collaborating on-line on Synaptic
	The complementary elements of hacking
	Deep hack mode and asynchronous sociality
	Socialising on-line
	Free software conferences: Meeting in-person
	Conclusions

	Chapter 4
	Learning more than mastery
	- the diverse motivations of the Ubuntu hackers
	Hacking as an art
	Social values infused in the code
	Writing beautiful code to assert one's ability
	Hacking as a shared technical challenge 
	Sharing an ethical commitment 
	Conclusions

	Chapter 5
	“A system that works for me”
	– how Ubuntu hackers use and configure their system
	Configuring and using the Ubuntu system
	Dwelling and building in the Ubuntu system
	The sedimented system
	The many dwellers of the Ubuntu system

	Chapter 6
	Building trust online
	 – how the Ubuntu hackers collaborate on a system-wide scale
	Becoming an Ubuntu developer
	Building digital trust
	Communicating through changes
	Breaking the users’ trust
	Hacker big-man governance and meritocracy
	Conclusions

	Conclusion
	Unfolding the Ubuntu system
	The Ubuntu community of practice
	Implications of theories and methods on the analysis
	Perspectives for wider application and future research

	References cited

