Perceiving Computers

- A comparative armchair analysis of how
language influences the way ordinary computer
users and computer experts perceive computers.

Andreas Lloyd

2005

Introduction
Within the past 30 years, the computer has become a metonymy for technology — an

integral part of basically any new technological development produced, so pervasive
in our everyday life that we're hardly even aware of its presence at all. But even so,
computer technology is running our phones, our kitchen equipment, our cameras,
stereos and video players. It is used to organise timetables and money transactions,
taxes, criminal and health records, surveillance, vote counting — all of these functions
beyond what we usually associate with the personal computer, in itself a tool so
incredibly versatile that most of us are only aware of a fraction of its potential.

Within the last 15 years or so, the personal computer has become a basic necessity for
all white collar work, opening up new avenues of digital communication such as
email, web pages and instant messaging, even for managing photos, videos and music
collections.

All of a sudden, everybody has had to become computer literates, though this
transition has not been easy for everyone. The introduction of the computer as a
universal information tool has instituted changes in the routines of work and everyday
life in such a massive fashion that we seem to forget how quickly we are getting to
take these changes for granted. Only few people have actually gotten to terms with the
machine they use and rely on for all their office work, and — to an increasing degree —

their communication as well.

This gap in ability has been spanned by the computer experts, the curious few whose
pure enthusiasm for the new technology originally opened the market for the first
personal computers (cf. Levy 1994). These people are maintaining the velocity of
modern society in its already now extreme dependence on computing technology
through their knowledge of the abstract, intangible nature of software and the inner
workings of the computer. The way that these experts perceive computers is so
radically different from the average user that most tend to ignore it, yet when we hear
them talk with each other about these machines that we rely on, and that we rely on
these experts to keep working, it is hard to ignore this specialized language of
metaphors and acronyms which computer experts easily and fluently. Sentences such
as “Open port 22 in the firewall to allow the SSH-client access” indicate an esoteric
language that both directly and indirectly may be structuring experts’ and users’

perception of computers.

In this essay, I will partly use my own observations and experiences as a computer
supporter, partly the limited literature' available on the use and perception of
computers in a sort of “armchair” ethnographic analysis comparing how the average
everyday computer users and self-professed computer experts perceive and
conceptualize the computer. I will use this comparison to explore how language may
be structuring our perception of computers, and as an example of the ever-ongoing
discussion of whether language in general is determining the ways in which we think

and perceive the world.

! The perception and use of computers has not drawn much attention in its own right within the

rather technology-shy discipline of anthropology. The limited anthropological focus has so far been
on the new possibilities for communication and social interaction opened by the rise of computers
and telecommunications, rather than the varying social and cultural perception and use of
computers inherent in the technology in its own right. Though anthropologists are now beginning to
recognize the importance of examining the perception and understanding of computers, the
groundwork of this field has long since been developed by psychologists such as Sherry Turkle,
computer scientists such as Gerald Weinberg and even popular science writers like Steven Levy.
This literature is not based on any direct ethnographic fieldwork, but can rather be compared to the
accounts of colonial engineers, soldiers and missionaries upon which early anthropologists for most
of the empirical data. As the field of computers is still so new, I've found it necessary to base this
essay on “armchair” sources.

The ordinary computer user
Having worked in a university computer support department for several years, I have

had the opportunity to observe ordinary users' computer problems firsthand. Many
users have only been using computers for a few years, and often their introduction to
the technology has been helped to a great extent by the Graphical User Interface
(GUI) based on the “desktop” metaphor and popularised by Microsoft Windows
through the 1990s.> The desktop metaphor should be familiar to almost any computer-
literate person today,’ yet, it is mere gloss upon the true, and much more complicated
nature of the computer, consisting of complex layers of abstract, mathematical
symbols with little apparent connection to the functionalities known by the ordinary
user. Therefore, there is often little connection between the problem a user may be
having, and the relevant solution.

In his article “Spirits as ready to hand” (2004), the Danish anthropologist Rane
Willerslev argues that we most often use 'recipe knowledge' to assume mastery of the
technology we use, without necessarily understanding the inner workings of these
technologies. This allows us to use a technology without paying it any attention as
such, it becomes a transparent tool to fulfill our work — such as using a computer to
write an essay but not noticing the computer, merely the work being written. This is
what Heidegger calls 'ready-to-hand' — an ease of use that removes conscious focus
from the tool onto the work itself.

In the case of computers, it is through the GUI, the computer becomes 'ready-to-hand'
for the average user who, with his 'recipe knowledge' of that GUI, can use it as tool
without further thought as to how it works.

But the moment that the tool no longer functions as expected, as it becomes 'unready-
to-hand', the shock of its failure brings the tool back into the consciousness of its user,
and awakes a need for negotiation and solving of this new problem (Willerslev 2004:
401-405). Willerslev uses this to explain the Yukaghir hunters' relationship to the

spirits whom they offer gifts in order to secure success on the hunt. As one hunter

2 For more on the history of Graphical User Interfaces and the Desktop metaphor, see

http://arstechnica.com/articles/paedia/gui.ars

> Inthe terminology of the “Desktop” metaphor, the screen is virtual desktop, displaying the

computer's file system as an intricate hierarchical system of folders and files. There is a virtual trash bin
where unwanted files can be dragged and deleted, and there are various applications with the look and
feel of other, familiar technologies. I.e. a word processor is basically the same as a typewriter, a media
player plays cds and DVDs much like an ordinary DVD player, etc.

http://arstechnica.com/articles/paedia/gui.ars

explains it:

It is like the way in which you use your computer. You write on it, but you do not think about how it
actually works. You have told me this yourself. You just need to work on it, not to understand how it
works. It is the same with me. I need to do so and so to kill an elk, but I do not think about its deeper
meaning and I do not need to know.

(Willerslev 2004: 402)

When the hunt fails, and no elks are to be found, the shock will force the Yukaghir
hunters to negotiate a solution with the spirits, for instance by figuring out that one
hunter had upset the local spirit by killing a pregnant dog and quickly proceeded to
exclude him from the hunt (Ibid. 406). Like the Yukaghir hunters, who have basic
prototypical ideas of what the spirits are like (Ibid. 407), most computer users usually
have a some notions of what computers are capable of, and what might go wrong
(such as vira, spam, “hackers” etc.), so that they easily can generate an explanation for
their computer's sudden 'unreadiness-to-hand'. But since many users lack the technical
knowledge and vocabulary necessary to give them a clear idea of how to solve it, they
are left in need of help and explanation whenever a computer requires expertise of the
inner workings of the computer — beyond the limited ‘recipe knowledge’ they possess
of the GUI. In these cases, many users often revert to an — often consciously wrong —
explanation saying that the machine “ill” in order to communicate their computer
troubles.

In her book “The Second Self” (1984), the American psychologist Sherry Turkle
argues that most computer users from time to time anthropomorphizes the computer,
constructing it as a psychological subject that, though based upon a collection of
abstract concepts gathered in a core rational, mathematical logic, still can be blamed
for mistakes, treated nicely to produce certain results, and be “put to bed” to recover
from a nasty virus. Turkle lists a wide range of examples of computer users relating to
their machine as more than a mere tool, but rather an independent entity with which
negotiations often must be held in order to achieve the desired result. Turkle cites an
example of an airline ticket agent whose apology to customers bumped back from
overbooked flights is that the computer fouled up (because it has been programmed on
the assumption that some passengers won't show for any given flight), rather than

laying blame on her coworkers, company policy or some other independent agent

(Ibid. 20-22, 271-274).

Much like in the case of the Yukaghir spirits, the need to consciously reflect on, and
anthropomorphize the computer usually arises only in situations when computer does
something so unexpected, so outside of the usual pattern of daily use, that it requires
an explanation.

In general, there are three main categories of computer problems encountered by the
average user, which may trigger such a reaction: Technical problems, user problems
and inexplicable problems.

Technical problems are usually straight-forward, though not always easily solvable
centered around the computer itself, such as setting a machine up to connect to the
internet, or to automatically make a backup every week. User problems usually do not
so much require understanding the problem on the level of the machine as it requires
understanding what it is the user wants to achieve and helping her towards that goal,
for example by showing her functions she wasn't aware of. Inexplicable problems are
situations that seem truly inexplicable — such as when opening two specific
applications in a certain way and order makes the computer crash. This leaves the
supporter to explain the apparently inexplicable, and it is often easier to support the
user's already active idea or semi-superstition that the computer is indeed capable of
being ill or unhappy from time to time, rather than attempt an explanation necessarily
using an amount of computer jargon.

In all cases of computer problems, the authority and expertise of a computer expert is
often tied directly to the language he uses. Much like the authority of doctor is tied to
his use of Latin denominations of various parts of the body or a mechanic with his
specific knowledge denominating the inner workings of a car, the computer expert
uses acronyms and conceptual metaphors such as HTML, RAM, Browser or
Motherboard to define different parts of the computer.

But unlike repairing a car, where the mechanic can point triumphantly to some
clogged-up filter or worn-out ball-bearing; or diagnosing a patient, where the doctor
can point to any part of the body, explaining what the Latin name signifies; the
computer expert can only rarely solve a problem by opening up the machine and
poking at its innards. Most of his vocabulary covers abstract concepts of software

bound in esoteric acronyms and vague metaphors with such as firewalls, ports, files

and folders with no apparent physical referents.

When a computer expert is called to solve a problem, he will begin typing away at the
keyboard, producing strange results and finally, without anything seemingly having
changed much at all, triumphantly claim that the problem is solved. In order to explain
to the ordinary user how a problem occurred and how to avoid it, the supporter can
say something like “Your text is ASCII-coded rather than HTML.. that can give
trouble on non-standards-compliant browsers” — which won’t make much sense to the
user without a fair amount of extra explaining about standards, formats and browsers —
or he can show rather than tell the user how to avoid the problem another time.
Naturally, as neither supporters nor users are usually patient enough for long
explanations, the mimetic and more pragmatic approach is by far the most common —
and this is also the usual way in which the rudimentary ‘recipe knowledge’ of the
average user is developed.

With the seemingly vague, esoterically difficult language that defines its parts, and its
near total opacity in its inner workings (being a grey box capable of seemingly
magical feats), the computer appears to be inexplicable — much like the workings of
the brain. It is this vagueness that often reinforces the ongoing anthropomorphisation
of computers, already strong from popular notions of Artificial Intelligence stemming
from the enthusiastic hopes for computing technology often offered by computer
experts themselves in everything from pulp science fiction to academic journals.

In summary, the ordinary user's perception of the computer varies between not being
consciously aware of it when using it as a ‘ready-to-hand’ tool (though this is also
very much due to the fact that the working environment offered through the “desktop”
metaphor decreases the abstract unfamiliarity of the machine, giving the user an
intuitive feeling of greater control and less need to understand the esoteric, acronymic
language of the computer) that simply is performing according to the expectations of
the user's limited 'recipe knowledge', and perceiving it psychologically as a fussy
“spirit” when it isn’t working as expected, needing to be appeased, in order to return it

to a working shape or simply to make it do as the user want.

The hacker
So far, I've been setting up a sharp dichotomy between “average computer users” and

“computer experts”, yet this distinction is crude. There are many computer users who
don't anthropomorphize their computer, and there are many so-called experts,
including myself, whose technical knowledge is quite limited, but who use their basic
understanding of the inner workings of computers to give them a conceptual
framework upon which to recognize and solve his problems. Separated from these
users are the true computer experts, or hackers, as they like to call themselves. In the
online “Jargon File”, a dictionary of hacker terms and expressions collectively
compiled by computer enthusiasts, the term hacker is defined as “A person who enjoys
exploring the details of programmable systems and how to stretch their capabilities, as
opposed to most users, who prefer to learn only the minimum necessary.” Similarly,
the act of hacking in that sense is defined as the playfully clever exploration and
experimenting with computers. Unlike ordinary users, who merely use the functions
already programmed into the machine, hackers spend their time programming the
computer to do their bidding, exploring new ways to use the computer.

Sherry Turkle likens hackers to virtuoso pianists or artists — they're all caught up with
an intense need to master their medium, to understand and master the amazing
complexity of the computer (Turkle 1984: 207-225). To hackers, the computer is not
just a tool to be used in order achieve other means, such as writing and printing your
essay, contacting your friends or calculating your taxes — it is a medium of expression
in its own right. It is the process of winning and retaining this mastery over the
computer that is the thrill of hacking.

When socialising, hackers often use jargon, much of it derived from computer
acronyms and science fiction novels.” These are the esoteric mutterings that ordinary
computer users often are exposed to when hackers or other experts fix their 'unready-
to-hand' computers. But the programming languages that hackers spend most of their

time using, cannot be spoken at all.

* Despite the common usage in the press of “hacker” to describe malicious meddlers who break into

computer systems, most of the computer enthusiasists who label themselves hackers do not
appreciate these connotations. Instead, they use the word “cracker”to describe such computer
vandals (cf. the Jargon File entry on Hackers).

Most parts of the computer have troublesome technical names such as RAM (Random Access
Memory) or CPU (Central Processing Unit). See the Jargon File [http://www.catb.org/~esr/jargon/]
for a dictionary of hacker's jargon and phrases or The Ultimate Computer Acronyms Archive for a
list of computer acronyms [http://www.acronyms.ch/].

http://www.catb.org/~esr/jargon/

Computers are complex machines that only understand input of 0 and 1 (such as
whether an electrical current is connected or not. This atomic unit of information is
called a bif). This most basic of communication is called machine language by
computer programmers. All the usable functions such as calculations, applications or
protocols that we use everyday consist of this simple input. In the early days of
computers, all programs were coded directly in this binary code which could take a
long time, and was very unintuitive for the programmer. Programmers therefore
developed various assembly languages which offered a list of commands more easily
remembered than binary code, for instance to tell the computer to add two numbers,
the machine language command might be //001101, while the assembly language
command would be add. Still, assembly languages were very primitive with a limited
set of instructions available, severely limiting what the programmer reasonably could
make the computer do. To widen the possibilities of computer programming, hackers
began designing high level programming languages that contain hundreds of different
instructions, statements, and parameters to be fed to the computer. Using a high level
programming language, the programmer can write a program in a form that is semi-
readable by human being and which can much conceptually precise than assembly
language. An example of a program written in a high level programming language,
instructing the computer to put the words “Hello World!” on the computer screen,
could look like this:

main()

{

}

printf("Hello, World!\n");

Written in the “C” programming language, this “source code” cannot be run directly
by the computer. First, it must be turned into machine language, or “object code”
using another program called a compiler. Programming is thus not a direct interaction
with the computer, but rather the writing of code that, when compiled, can be run by
the computer.

C is just one of many high level programming languages available. There have been
designed and programmed several thousand programming languages over the past 50
years, and new ones appear all the time. What a hacker can make a computer do is

determined by the language with which he works, and though all programming

languages are meant to be “Turing Complete” — i.e. capable of expressing all manner
of computation — they use wildly different instructions to produce these computations,
leaving the programs and code the programmer can design and produce very much
dependent on the programming language. Designing a programming language is often
a balance between making a language easy to learn (i.e. having simple, or natural-
language-like commands) and expressive power (i.e. the precision and concision of
the commands) (Wilson & Clark 1993: 318-319).°

Programming languages are unlike any natural language in that their communicative
focus is the computer — a machine that only can do what it is programmed to do,
nothing more, nothing less (Turkle 1984: 274). If the computer responds, it is either
with a failure or a success message, depending solely on the foresight of the
programmer. The programming language is thus centered on the program —i.e. a list
of actions that the computer can take, depending on the input from the user. This
requires a completely different syntax than that used in natural languages, as all the
computer can understand is “if user chooses A, then do B (B consists of first doing C,
then D, then E)”. This is syntactically extremely demanding, as most programming
languages use only imperative or declarative commands, parentheses, brackets,

indentations and punctuation to achieve its effects.” The computer needs

® There are three main groups of programming languages that use fundamentally different principles

in communicating with the computer: These are called Imperative/object oriented, Functional and
Logic languages — for more information see Wilson & Clark: “Comparative Programming Languages”
(1993). A way to compare basic differences in syntax and indentation between programming languages
is to look at the differences that appear in the above “Hello World!” example. See the webpage
http://en.wikipedia.org/wiki/Hello world program for an extensive list of examples. For more on
programming languages in general, see Paul Graham's essay, “Programming Languages Explained”,
(Graham 2004).

7 This is why one cannot “speak™ a programming language. It is simply not meant to be spoken.
Attempts have been made to make programming languages look and feel more like regular, spoken
languages such as English, but since the computer rejects all linguistic ambiguity and
interchangeability, these attempts have all failed. Some hackers enjoy writing poetry in programming

languages, and one language better suited for this endeavour than most, is called Perl. Here is an
(extreme) example of Perl poetry:

< >R

AT §S-

@5

V<> ~#4

&[]../

[{!,,SYSTEM HALTED

Read aloud, that would be:
Waka waka bang star tick tick hash,

Caret quote back-tick dollar dollar dash,

10

http://en.wikipedia.org/wiki/Hello_world_program

mathematically precise instructions, or the program will fail, and even one mistake
can jeopardize the entire output of a program.

The American computer scientist Gerald Weinberg has compared writing a computer
program with praying — it is unidirectional, and it not until you have compiled the
code that you will see whether it works or not (Weinberg 1971: 207).

Just as with the average computer user, the hacker normally perceives the computer as
'ready-to-hand' — but without the intermediate and limiting level of the graphical user
interface. He types his commands directly and precisely for the computer to compile
and run. It is in this way that the programmer actively and repeatedly seeks to test and
confirm his ability with the computer, risking 'unreadiness-to-hand' — a rejection of
his code — in hope to feel the thrill of mastering the computer.

Many computer scientists, among them Donald Knuth, author of the influential seven-
volume “The Art of Computer Programming”, argues that well-crafted computer
programs can be aesthetically pleasing, and that they can be joy for other
programmers to read. According to Knuth, a beautiful program should be as
mathematically precise and logically concise as possible, leaving less room for
mistakes (or 'bugs', as they're called in hacker terminology), it should be programmed
so that it will require as little processing power as possible to run, avoiding the
inelegant solution of using massive amounts of computation to achieve limited results
(Knuth 1992: 1-9). It is even possible to talk of distinctive styles of programming
(Knuth 1992: 8-10).

Steven Levy describes how hackers compete among each other to “bum” instructions
out of the code, making it as compact and streamlined as possible for the computer to
run effortlessly (Levy 1994: 43-45). The way the computer responds to the program is
the best indication of how well your programming skills are honed, of how sharp your
mind is. The hacker uses his intellect to infuse life into the program/machine
combination, and as the Russian computer scientist Andrei Ershov puts it, “this

triumph of intellect is perhaps the strongest and most characteristic aspect of

Bang star equal at dollar under-score,

Percent star waka waka tilde number four,
Ampersand bracket bracket dot dot slash,

Pipes curly-bracket bang comma comma CRASH.

Which sounds more like a Dadaistic sound poem than any meaningful poetry. See

http://www.perlmonks.org/index.pl?node=Perl%20Poetry for more examples.

11

http://www.perlmonks.org/index.pl?node=Perl Poetry

programming” (Ershov 1972: 504). This is the essence of what Levy calls the “hacker
ethic” — a collection of ethical notions that hackers seem to have in common:
Boundless technical curiosity, desire to take apart and master new technology and
share your knowledge,® belief that it is possible to create works of art and beauty on a
computer (and that these can change your life for the better) and a meritocratic notion
that hackers should be judged only on the quality of their hacking, rather than any
other criteria such as age, academic degree or position (Levy 1984: 39-49). Hacker
culture is thus centered on the computer — the final and impartial judge of your
hacking and programming abilities.

Often, programs grow so complex, full of interrelated elements and pieces that the
programmer will not have the sufficient time to explore all of it to master it fully. This
will leave the programmer much in the same situation as an ordinary user, letting
some amount of superstition of the psychological machine pervade the way he deals
with his program. Again, like many ordinary users, the programmer is aware that this
is wrong, yet he does it with the conviction that the computer is infallible, and any
problem along the way can be solved if enough time is spent working on it (Vinge
2001: 19-20).

Because of these human factors in programming, the computer program becomes a
reflection of the mind of the programmer, expressed in the code. This makes
programming languages central in order to understand not only the hacker’s
interaction with the computer, but also his interaction in the playful cleverness and
competitiveness of hacker culture through sharing of technology and beautiful code,
and the collaboration on shared projects which is by far the norm in programming.’
This means that when the hacker chooses his programming language (or even writes
his own!), he is not just picking his tool of choice for his given task (some languages
are good for small scripts — programs that quickly can solve a newly occurred
problem, others are good for writing whole operating systems, works of immense

complexity) but he is also picking his means of expressing himself, his aesthetic style

8 It is this curiosity and joy of sharing that is the driving force behind the Open Source movement who
advocates that a program’s source code should be available for studying to all who might be interested.
As it is today, most software companies do not offer the source code, but only the binary object code,
which the computers can read, but is impossible to decipher for human beings.

? Weinberg argues that programming is indeed a social activity and cites that most programmers spent
more than two thirds of their time working with other people rather than working alone (Weinberg
1971: 35).

12

— his mode of thought. As the renowned American computer scientist Alan Perlis puts
it: “A [programming] language that doesn't affect the way you think about
programming, is not worth knowing.” (Perlis 1982).

One of Sherry Turkle's informants described the act of programming thus:

Some people don't program straight from their mind. They still have to consciously think about all the
intermediate steps between a thought and its expression on a computer in a computer language. I have
basically assimilated the process to the point that the computer is like an extension of my mind. Maybe
of my body. I see it but I don't consciously think about using it. I think about the design, not
implementation. Once I know in my mind exactly what I want to do, I can express it on a computer
without much further conscious thought.

I usually don't even hear in my mind the words that I am typing. I think and type ideas expressed in
LISP [a programming language].

(Turkle 1984: 212).

This hacker has absorbed the possibilities and limits of his chosen programming
language so well, that he knows exactly what he could do with it, so that he only has
to focus on how to implement it while writing it. He is basically fluent in LISP. Steven
Levy tells the story of how one hacker entertains two other hackers by coding
assembly language tricks which they — with their shared mastery of the programming
language — found to be “hilariously incisive jokes”, with every few lines of instruction
leading to another punch line (Levy 1994: 136) — thus turning the programming
language into a direct communicative means between people, thinking so well within
the confines of the computer to understand the code as it is being written.

Another way of describing how a programming language structures the hacker’s
perception of what can be done with the computer can be found in Gerald Weinberg’s
“The Psychology of Computer Programming” (1971), where he begins his discussion

of programming language design with the story of “Levine the Genius Tailor”:

It seems that a man had gone to Levine to have a suit made cheaply, but when the suit was finished and
he went to try it on, it didn't fit him at all. “Look,” he said, “the jacket is much too big in the back.”
“No problem,” replied Levine, showing him how to hunch over his back to take up the slack in the
jacket.

“But then what about the right arm? It's three inches too long.”

“No problem,” Levine repeated, demonstrating how, by leaning to one side and stretching out his right
arm, the sleeve could be made to fit.

“And what about these pants? The left leg is too short.”

“No problem,” said Levine for the third time, and proceeded to teach him how to pull up his leg at the
hip so that, though he limped badly, the suit appeared to fit.

Having no more complaints, the man set off hobbling down the street, feeling slightly duped by Levine.
Before he went two blocks, he was stopped by a stranger who said, “I beg your pardon, but is that a new
suit you're wearing?”

The man was a little pleased that someone had noticed his new suit, so he took no offense. “Yes it is,”

13

he replied. “Why do you ask?”

“Well, I'm in the market for a new suit. Who's your tailor?”

“It's Levine — right down the street.”

“Well, thanks very much,” said the stranger, hurrying off. “I do believe I'll go to Levine for my suit.
Why, he must be a genius to fit a cripple like that.”

(Weinberg 1971:210-211).

Substitute the suit with a programming language, and Weinberg says that you have
something close to the feeling a programmer experiences when he begins to learn a
new programming language. Deciding to learn a new programming language is often
a question of accepting that what the programmer wants to accomplish cannot be done
in the language he already knows. In learning a new language, the programmer has to
bend his mind from the familiar ways of his first language to the different limits and
possibilities offered to him by the new one. At first he does not so much notice how
well dressed he is, as how crippled he feels, yet the more programming languages he
learns, the more he will be aware how one-sided his way of programming has been.
Programming languages are attempts to make communication simpler between the
computer and the programmer, seeking to give him greater expressive power with less
mental investment, but so far it is still the programmer that must scrunch in his suit to
fit the alien binary thinking of the computer (cf. Weinberg 1971: 211-214).

In short, hackers use programming languages to communicate with and master the
computer, seeing it as an expressive medium in its own right in which they can display
their technical mastery of complexity to their peers by making the computer do
surprising feats and by creating aesthetically pleasing code. The hackers consider the
computer a perfect machine, responding flawlessly to the often flawed input of
ordinary people. Communicating with the computer is solely on the terms of the
machine, forcing hackers to think in terms that the computer can understand. And as
hackers become familiar with their tools and grow closer to the machine, they also
come to perceive it psychologically, but unlike the ordinary computer user, the hacker
perceive the machine as a perfect, unprejudiced subject that judges them solely on

their intellectual capacity.

14

Language and our perception of computers
Cognitive science has long been inspired by the computer in attempting to produce a

coherent way of understanding how the brain works. Not only is computer jargon full
of 'mind jargon' inspired by the hopes of artificial intelligence and the continuing
anthropomorphization of computers, but computer metaphors are also spreading to
human mental terms. A teacher can say that he has his next lecture “hardwired”,
meaning that he can deliver without thinking, a girl can say that she is in “debugging
mode” when going to her psychotherapist, or a boy can say “his stack has
overflowed”, meaning that he has lost his train of thought as other thoughts or ideas
were crowding for attention (cf. Turkle 1984: 16-17). But as the British anthropologist
Maurice Bloch has pointed out, recent cognitive studies has shown that our way of
perceiving the world or “processing information” is markedly different from that of
computers. Our everyday knowledge and thought is generally embodied and non-
linguistic “scripts and schemata” — formed concepts that exist before language (Bloch
1998: 6). According to Bloch, this means that when our brain works to fit a concept to
a word, a situation or an image, it does not work like a computer, processing one bit of
information at a time, but rather recalls a highly flexible mental model or schema with
which to compare the new situation (Ibid. 12). He argues that it takes a while for the
human brain to build any such script or schemata — such as slowly learning to ride a
bicycle or using a GUI. Much of this kind of knowledge cannot easily be
communicated through language, only through interaction with the world — either by
exploring on your own or by mimetically apprenticing to someone already an expert at
that skill. In this way the “data” is registered, becoming habitually and easily available
for use in our everyday negotiation of the world. This would fit with how the ordinary
computer user generally perceives the computer according to two simple schemata:
One of the computer working as 'ready-to-hand' with the user’s ‘recipe knowledge’,
and one of the computer not working. Due to the opacity of the computer itself and
the abstract acronymic, almost esoteric jargon used by experts to describe its parts and
claim authority over the machine, the ordinary user will tend to identify the computer
using a sort of “folk psychological” image of the computer as a fussy “spirit” —
already half-necessitated to negotiate the shock of the computer's occasional

'unreadiness-to-hand.' In this way, the user comes to look upon the computer expert

15

almost as a sort of “techno-shaman” who has mastered the esoteric, magical nature of

the machine, solving problems through mystical rituals.

Hackers on the other hand, perceive the computer as more than a mere tool, but as an
expressive medium to be mastered — a goal in its own right. Due to the inflexibility of
the computer, the hackers are forced to think in certain patterns, set by their
programming language of choice, in order to facilitate stable communication with the
computer. In designing and constructing software, the hacker is creating abstract
blueprints of enormous complexity with no physical referent except a few vague
metaphors. The mental imagery used to explain the processes of the computer is a far
cry from the dream of cyberspace that is still alive in the popular imagination, and it is
solely up to the hacker’s own abstract imagination to make ‘stacks’, ‘ports’ and ‘links’
fit together into a working whole to be tested by the computer.

Programming as a skill seems to be a purely abstract interaction, with no direct
worldly referent, and does as such not fit easily with Bloch's concept of cognitive
schemata. Even though a hacker can adopt a programming language in such a way as a
cognitive schemata, the greater his familiarity with this language becomes, the more it
will limit his wider possibilities of mastering the computer. Programming, like other
abstract, linguistic skills such as writing or scientific enquiry, cannot simply be
learned by interacting with the world. In order to understand this, I suggest the
American anthropological linguist Benjamin Lee Whorf's idea that some languages
are better suited for communicating certain intangible ideas than other languages. His
classic example is of the Hopi language of Southwestern USA, allow for the
conceptualizing time as truly intangible, rather than the general tendency in English of
dealing with time as a concrete, almost tangible substance to be measured and
described spatially. Whorf's point is that concepts inherent in language can be so
pervasive in this way, that we rarely notice how they limit our way of communication
and thus maybe even our thinking and perception of the world (Whorf 1956: 134-159,
Lucy & Wertsch 1987: 73-74). This seems very much the case with programmers who
use intangible concepts not easily translatable — even between each other, much less to
natural languages such as English. Like Levine’s suit, it is only when we try to learn

something new that we realize how set much our perception and actions have been

16

defined by what we have used so far.

Interestingly enough, Sherry Turkle describes how children learning programming at
an early age don't need to understand the mathematical principles behind
programming to make the computer work. By experimenting with variables and
commands, the children develop a mental model of what the computer is capable of,
indirectly accepting the unequivocal rules it sets (Turkle 1984: 93-136). This may
prove to be quite telling for how we learn our own natural languages and how our
grammar and word association is defined by our cultural and social surroundings. So
much of our experience, of what we perceive is intangible and cannot easily be
expressed through language. We use language to communicate abstract and intangible
things and ideas such as frustration, anger or love to each other, but we each have our
own ideas of what that is, culturally bound to some degree. In this way, poets and
programmers share the continuing struggle of finding words, using words to
communicate this intangible meaning. Computer programs, like other abstract
concepts, theories or ideas with so little physical referent that vague metaphors are our
only way of describing them may indeed be structuring our perception of the world,
especially our attempts to communicate that perception.

It is difficult (and will at least require much further study) to say whether it is the
abstract idea, the linguistic definition and communication of that idea or the
phenomenological using of language as a tool that actually shape our perception of the
world, but as I hope to have shown in this crude “armchair” analysis, language

certainly does influence our perception of the world to some degree.

17

Bibliography

- M.E.F. Bloch, “Language, Anthropology and Cognitive Science” in: M.E.F. Bloch,
How we think they think (Oxford: Westview Press, 1998), pp. 3-21.

- A. Ershov, “Aesthetics and the Human Factor in Programming” in:
Communications of the ACM, Vol. 15, no. 7 (July 1972), pp. 501-505.

- Paul Graham, Hackers & Painters (Sebastopol CA: O'Reilly, 2004).

- D. E. Knuth, “Computer Programming as an Art” in D.E. Knuth, Literate
Programming (Stanford: Center for the Study of Language and Information, 1992),
1-16.

- S. Levy, Hackers — Heroes of the Computer Revolution (New York: Penguin Books,
1994).

- J.A. Lucy & J.V. Wertsch, “Vygotsky and Whorf: A comparative Analysis” in:
Maya Hickmann (ed.): Social and Functional Approaches to Language and
Thought (Orlando FL: Academic Press, 1987) pp. 67-85.

- A. Perlis, “Epigrams on Programming” in: SIGPLAN Notices 17(9) (September
1982). Also available at http://www.bio.cam.ac.uk/~mw263/Perlis Epigrams.html

- S. Turkle, The Second Self — Computers and the Human Spirit (New York: Simon
& Schuster, 1984).

- V. Vinge: “Introduction” in: James Frenkel (ed.): True Names — and the Opening of
the Cyberspace Frontier (New York: Tor, 2001) pp. 15-23.

- G. M. Weinberg, The Psychology of Computer Programming (New York: Van
Nostrand Reinhold, 1971).

- B.L. Whorf, Language, Thought & Reality (Cambridge MA: MIT Press, 1956).

- R. Willerslev, “Spirits as 'Ready-to-Hand"’ in: Anthropological Theory, Vol. 4 (4)
(2004), pp. 395-418.

- L.B. Wilson & R.G. Clark, Comparative Programming Languages (Wokingham:
Addison-Wesley Publishers, 1993).

18

http://www.bio.cam.ac.uk/~mw263/Perlis_Epigrams.html

